Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 2 maja 2025 00:30
  • Data zakończenia: 2 maja 2025 00:46

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. fizyczne
B. dla człowieka
C. chemiczne
D. dla środowiska
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 4

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000

A. 1000 g/dm3
B. 107 mg/m3
C. 1000 g/m3
D. 10 g/dm3
Odpowiedź 1000 g/m3 jest poprawna, ponieważ odnosi się do normy PN-EN 1008, która określa maksymalne dopuszczalne stężenie chlorków w wodzie przeznaczonej do produkcji betonu. Zgodnie z tą normą, stężenie chlorków powinno wynosić maksymalnie 1000 mg/dm3, co można przeliczyć na 1000 g/m3, ponieważ 1 mg/dm3 odpowiada 1 g/m3. Użycie wody z takim stężeniem chlorków w procesie produkcji betonu jest kluczowe, ponieważ nadmiar chlorków może prowadzić do korozji zbrojenia, a tym samym osłabienia konstrukcji betonowych. W praktyce oznacza to, że firmy budowlane i producenci betonu muszą przeprowadzać regularne analizy jakości wody wykorzystywanej do mieszania, aby zapewnić zgodność z normami i uniknąć potencjalnych problemów w przyszłości.

Pytanie 5

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Glukozę
B. Tlenek rtęci(II)
C. Azbest
D. Azotan(V) srebra
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, biureta i pipeta
B. Kolba miarowa, zlewka oraz bagietka
C. Kolba miarowa, cylinder miarowy oraz eza
D. Kolba miarowa, kolba stożkowa oraz pipeta
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
B. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
C. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 10

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 5,0000 g
B. 5,3000 g
C. 7,0000 g
D. 7,5000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Wstępne suszenie.
B. Liofilizację.
C. Oznaczanie wilgoci.
D. Utrwalanie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 13

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. instrumentalnym
B. paralaksy
C. dokładności
D. losowym
Wybierając coś innego niż 'paralaksy', można się pomylić w rozumieniu, jak działają błędy w pomiarach. Błąd przypadkowy to te różnice, które mogą się zdarzać przez różne czynniki, jak temperatura czy drgania, a nie przez to, jak patrzymy na płyn. Błąd precyzji z kolei to raczej te stałe ograniczenia związane z narzędziami, które wcale nie dotyczą paralaksy. Wreszcie, błąd instrumentalny zdarza się przez złe kalibracje sprzętu, co też nie ma nic wspólnego z tym zjawiskiem. Ważne, żeby zrozumieć te wszystkie pojęcia, bo mają inne znaczenie w pomiarach. Traktowanie ich jako jedno może wprowadzić w błąd, a to z kolei skutkuje nieprawidłowymi wynikami. Dlatego tak ważne jest, by wiedzieć, skąd bierze się błąd, bo to klucz do dobrego pomiaru. Odpowiednie techniki i znajomość różnych błędów pomagają uzyskać lepsze i dokładniejsze wyniki w laboratoriach.

Pytanie 14

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
B. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
C. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
D. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
Przygotowanie roztworu o stężeniu 0,0100 mol/dm3 w objętości 100 cm3 lub 1000 cm3 na podstawie danych z pytania jest niepoprawne z perspektywy obliczeń stężenia molowego. W przypadku pierwszej z tych odpowiedzi, gdy planujemy uzyskać stężenie 0,0100 mol/dm3, obliczamy: n = C * V, czyli n = 0,0100 mol/dm3 * 0,1 dm3 = 0,001 mol. Aby uzyskać 0,1 mola EDTA z odważki, potrzebowalibyśmy znacznie większej objętości roztworu, co przekracza dostępne możliwości. Podobnie w przypadku 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3, obliczenia prowadzą do jeszcze większych niezgodności, ponieważ wymagałyby one 0,0100 mola * 1 dm3 = 0,01 mol, co także nie jest możliwe przy dostępnym 0,1 molu. W przypadku stężenia 0,2000 mol/dm3 w objętości 2000 cm3 sytuacja jest analogiczna, ponieważ znowu obliczenia pokazują, że potrzebna byłaby większa ilość moli niż posiadamy. Te błędy wynikają z nieprawidłowego zrozumienia relacji między stężeniem, ilością substancji a objętością roztworu. W praktyce, kluczowe jest umiejętne posługiwanie się równaniami dotyczącymi stężenia molowego, aby uniknąć takich fałszywych wniosków i zapewnić prawidłowe przygotowanie roztworów. Odpowiednia znajomość tych zasad jest istotna w każdym laboratorium chemicznym i w zastosowaniach analitycznych.

Pytanie 15

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. skorzystać z amoniaku
B. zmyć bieżącą wodą
C. polać 3% roztworem wody utlenionej
D. zastosować 5% roztwór wodorowęglanu sodu
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Sód powinien być przechowywany

A. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
B. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
C. w szczelnie zamkniętym pojemniku pod warstwą nafty
D. w pojemniku z dowolnym zamknięciem pod warstwą nafty
Sód jest metalem alkalicznym, który jest bardzo reaktywny, szczególnie w obecności wilgoci i powietrza. Dlatego kluczowe jest jego przechowywanie w odpowiednich warunkach. Odpowiedź, że sód powinien być przechowywany w szczelnie zamkniętym pojemniku pod warstwą nafty, jest poprawna, ponieważ nafta działa jako skuteczna bariera ochronna. Ogranicza dostęp powietrza i wilgoci, co zapobiega niepożądanym reakcjom chemicznym. W praktyce, wiele laboratoriów oraz zakładów przemysłowych stosuje naftę lub inne oleje mineralne w celu bezpiecznego magazynowania sodu, co jest zgodne z zaleceniami standardów bezpieczeństwa chemicznego. Przechowywanie w szczelnym pojemniku również minimalizuje ryzyko przypadkowego kontaktu z innymi substancjami chemicznymi, co jest istotne z punktu widzenia BHP. Zastosowanie odpowiednich praktyk w zakresie przechowywania substancji chemicznych, takich jak sód, jest nie tylko kwestią ochrony zdrowia, ale także przestrzegania norm i regulacji w zakresie ochrony środowiska.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol

A. 100%
B. 44,6%
C. 4,4%
D. 56,0%
Wydajność procentowa reakcji chemicznych jest kluczowym wskaźnikiem efektywności procesów chemicznych. W omawianym przypadku, mając 100 g węglanu wapnia (CaCO3), teoretyczna masa tlenku wapnia (CaO), który można uzyskać w wyniku rozkładu, wynosi 56 g. Otrzymana masa 25 g tlenku wapnia pozwala na obliczenie wydajności procentowej, stosując wzór: (rzeczywista masa / teoretyczna masa) * 100%. Obliczenia prowadzą do wartości 44,6%, co wskazuje na to, że tylko część teoretycznej ilości produktu została uzyskana w rzeczywistej reakcji. Taka sytuacja może być efektem różnych czynników, w tym niepełnego rozkładu, strat materiałowych podczas procesu, czy też niewłaściwych warunków reakcji. W praktyce, zrozumienie i obliczanie wydajności reakcji chemicznych jest niezbędne w przemyśle chemicznym i farmaceutycznym, gdzie optymalizacja procesów jest kluczowa dla efektywności kosztowej i jakości produktów. Utrzymywanie wysokiej wydajności jest również zgodne z zasadami zrównoważonego rozwoju, co jest istotne w nowoczesnych procesach produkcyjnych.

Pytanie 20

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Rozdzielacz
B. Kolba ssawkowa
C. Biureta gazowa
D. Kolba stożkowa
Biureta gazowa, kolba ssawkowa i kolba stożkowa, to nie są sprzęty, które używa się do ekstrakcji, co może prowadzić do zamieszania w ich funkcji. Biureta gazowa jest głównie do dozowania gazów podczas reakcji chemicznych, a nie do separacji faz. To urządzenie ma zastosowanie w analizach ilościowych, gdzie liczy się precyzja, a to jest coś zupełnie innego niż ekstrakcja. Kolba ssawkowa to narzędzie do filtracji i też się nie nadaje do separacji faz, bo jej konstrukcja nie pozwala na efektywne oddzielanie cieczy. A kolba stożkowa? Ona jest do mieszania, przechowywania i podgrzewania substancji, ale nie do ekstrakcji, co stawia jej zastosowanie w tym kontekście w kiepskim świetle. Często ludzie mylą funkcje tych narzędzi, co prowadzi do złego doboru sprzętu w eksperymentach. Dlatego ważne jest, żeby zrozumieć, do czego każde z tych narzędzi służy, żeby uniknąć błędów w laboratorium. Bycie pewnym, jak działają urządzenia laboratoryjne, jest kluczowe dla bezpiecznej i efektywnej pracy.

Pytanie 21

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zmniejszyć, a temperaturę podnieść
B. zmniejszyć, a temperaturę obniżyć
C. zwiększyć, a temperaturę zmniejszyć
D. zwiększyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 22

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. średnią
B. ogólną
C. śladową
D. pierwotną
Wybór odpowiedzi 'pierwotna', 'ogólna' czy 'śladowa' opiera się na nieporozumieniach dotyczących podstawowych pojęć związanych z przygotowaniem próbek. Odpowiedź 'pierwotna' sugeruje, że próbka jest reprezentatywna dla całej populacji, co jednak nie jest prawdą. W rzeczywistości, pierwotna próbka to ta, która została zebrana bez jakiejkolwiek obróbki, co nie odzwierciedla rzeczywistych właściwości populacji. Odpowiedź 'ogólna' jest myląca, ponieważ termin ten w kontekście próbek mógłby oznaczać całą zbieraną populację, a nie jej analizowaną reprezentację. Z kolei odpowiedź 'śladowa' odnosi się do próbek, które są w tak małej ilości, że mogą nie być użyteczne do rzetelnej analizy statystycznej lub chemicznej. Przygotowanie śladowej próbki może prowadzić do błędnych wniosków, gdyż nie przedstawia ona wiarygodnego obrazu całości, co może być szczególnie niebezpieczne w zastosowaniach przemysłowych czy medycznych. W teorii próbkowania istotne jest zrozumienie, że każda z tych błędnych odpowiedzi nie uwzględnia faktu, iż średnia próbka jest niezbędna do zapewnienia reprezentatywności i dokładności w pomiarach, co jest kluczowe w kontekście analizy danych i podejmowania decyzji.

Pytanie 23

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. filtracją
B. adsorpcją
C. chromatografią
D. destylacją
Chromatografia to technika rozdzielania składników mieszanin, która opiera się na różnicach w ich powinowactwie do fazy stacjonarnej i fazy ruchomej. Proces ten umożliwia analizę oraz oczyszczanie substancji chemicznych, a jego zastosowanie jest szerokie, od analizy jakościowej w laboratoriach chemicznych po przemysł farmaceutyczny, gdzie służy do czyszczenia składników aktywnych. W chromatografii cieczowej, która jest jedną z najczęstszych metod, próbka jest rozdzielana na podstawie różnic w szybkości migracji jej składników przez bibulę lub kolumnę wypełnioną odpowiednim materiałem. Zastosowanie chromatografii obejmuje zarówno naukę, jak i przemysł, umożliwiając kontrolę jakości, identyfikację substancji oraz badania środowiskowe, co czyni ją kluczowym narzędziem w analizach chemicznych. Standardy ISO oraz metodyka Good Laboratory Practice (GLP) regulują stosowanie chromatografii, zapewniając wysoką jakość wyników i bezpieczeństwo w laboratoriach.

Pytanie 24

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. redoksymetrycznego
B. alkacymetrycznego
C. potencjometrycznego
D. kompleksometrycznego
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 25

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 2500 g
C. 1000 g
D. 200 g
Wybór masy próbki wynoszącej 100 g jest zgodny z normami obowiązującymi dla wielkości ziaren poniżej 1 mm. W praktyce, przy analizach materiałów sypkich, takich jak proszki czy granulaty, istotne jest, aby masa próbki była dostosowana do rozmiaru cząstek, co wpływa na dokładność wyników. W przypadku cząstek o wielkości 1·10^-5 m, co odpowiada 0,01 mm, ich właściwości fizyczne i chemiczne są różne od większych ziaren, co wymaga odpowiedniego podejścia do pobierania próbek. Dla takich cząstek, minimalna masa próbki określona w normach branżowych wynosi 100 g, co zapewnia reprezentatywność oraz wystarczającą ilość materiału do przeprowadzenia analizy. Przykładowo, w laboratoriach zajmujących się analizą materiałów budowlanych lub farmaceutycznych, przestrzeganie takich wytycznych jest kluczowe dla uzyskania wiarygodnych wyników badań.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. systematyczny
B. przypadkowy
C. bezwzględny
D. względny
Błąd bezwzględny to różnica między średnim wynikiem pomiarów a wartością rzeczywistą, która jest stałą wartością odniesienia. Ta miara błędu dostarcza informacji o tym, jak daleko od rzeczywistej wartości znajduje się wartość zmierzona. Przykładowo, jeśli w eksperymencie zmierzono długość obiektu wynoszącą 10 cm, a rzeczywista długość obiektu wynosi 9,5 cm, błąd bezwzględny wynosi 0,5 cm. Obliczenia błędu bezwzględnego są istotne w różnych dziedzinach, takich jak inżynieria, nauki przyrodnicze czy jakość produkcji, gdzie precyzyjność pomiarów jest kluczowa dla uzyskania wiarygodnych wyników. Błędy bezwzględne są również stosowane do oceny sprzętu pomiarowego, gdzie standardy takie jak ISO 9001 podkreślają znaczenie dokładności i precyzji w procesach pomiarowych. Poprawne identyfikowanie błędów bezwzględnych pozwala na podejmowanie działań korygujących, co jest niezbędne dla utrzymania wysokiej jakości procesów produkcyjnych oraz rzetelności badań naukowych.

Pytanie 28

Aby uzyskać roztwór CuSO4 o stężeniu 15%, w jakim stosunku należy połączyć roztwory 10% oraz 20%?

A. 2:3
B. 1:1
C. 3:2
D. 2:1
Odpowiedź 2:1 jest poprawna, ponieważ aby uzyskać roztwór CuSO4 o stężeniu 15% z roztworów 10% i 20%, musimy zastosować regułę mieszania stężeń. Mieszanie dwóch roztworów o różnych stężeniach polega na wykorzystaniu wzoru na stężenie końcowe: C1V1 + C2V2 = C3(V1 + V2), gdzie C1 i C2 to stężenia początkowe roztworów, C3 to stężenie roztworu końcowego, a V1 i V2 to objętości roztworów. W tym przypadku C1=10%, C2=20%, a C3=15%. Przy odpowiednich obliczeniach i zastosowaniu równości, otrzymujemy stosunek V1:V2 równy 1:1. W praktyce, takie mieszanie jest powszechnie stosowane w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów są kluczowe dla dalszych reakcji chemicznych czy produkcji. Przykład zastosowania może obejmować przygotowywanie materiałów do analizy chemicznej lub syntezę związków chemicznych, gdzie dokładność stężeń wpływa na wyniki eksperymentów.

Pytanie 29

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Tygiel Schotta
B. Krystalizator
C. Eksykator
D. Kolba Kjeldahla
Krystalizator to takie płaskodenne naczynie, które często widzimy w laboratoriach chemicznych. Używamy go do uzyskiwania substancji stałej w wyniku krystalizacji, co jest dosyć fajnym procesem. Krystalizacja polega na tym, że powoli odparowujemy rozpuszczalnik z roztworu, a to sprzyja tworzeniu się ładnych kryształów. Dobrze zaprojektowane krystalizatory mają dużą powierzchnię parowania, więc to przyspiesza cały proces. W praktyce, często korzystamy z krystalizatorów, żeby oczyścić różne substancje chemiczne, ale też w produkcji soli czy związków organicznych. Z mojego doświadczenia, w laboratoriach ważne jest, żeby monitorować temperaturę i ciśnienie, bo to wpływa na efektywność krystalizacji. A jeśli chodzi o świetne wyniki, to można wspomagać wytrącanie kryształów poprzez dodanie zarodków krystalicznych – to też dobrze mieć na uwadze.

Pytanie 30

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. serowatych
B. grubokrystalicznych
C. drobnokrystalicznych
D. galaretowatych
Sączki o najmniejszych porach, oznaczane kolorem niebieskim, są przeznaczone do sączenia osadów drobnokrystalicznych. Te sączki charakteryzują się wysoką zdolnością do zatrzymywania cząstek stałych o niewielkich rozmiarach, co czyni je idealnym narzędziem w procesach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość filtracji. Przykładem zastosowania takich sączków może być oczyszczanie roztworów chemicznych w laboratoriach analitycznych, gdzie istotne jest usunięcie wszelkich zanieczyszczeń, które mogą wpłynąć na wyniki pomiarów. Ponadto, w branży farmaceutycznej, sączki te są wykorzystywane do filtracji substancji aktywnych, co zapewnia ich czystość i skuteczność. Stosowanie sączków z odpowiednią porowatością zgodnie z wymaganiami procesu filtracji jest zgodne z normami ISO i innymi standardami branżowymi, co podkreśla znaczenie ich właściwego doboru.

Pytanie 31

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną, próżniową oraz hydrantową
B. elektryczną oraz chłodniczą
C. elektryczną i wodociągowo-kanalizacyjną
D. wodociągową i grzewczą
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 32

Średnia masa wody wypływająca z pipety o deklarowanej pojemności 25 cm3, w temperaturze 25°C wynosi 24,80 g. Korzystając z danych zamieszczonych w tabeli wskaż wartość poprawki kalibracyjnej dla tej pipety.

Masa wody zajmującej objętość 1 dm3 w zależności od temperatury pomiaru
Temperatura
°C
Masa wody
g
20997,17
21997,00
22996,80
23996,59
24996,38
25996,16
26995,93
27995,69
28995,45
29995,18
30994,92

A. 0,16 ml
B. 0,10 ml
C. 0,18 ml
D. 0,25 ml
Dobra robota! Odpowiedź 0,10 ml jest jak najbardziej na miejscu i świetnie pokazuje, jakie są zasady kalibracji pipet. Jak masz pipetę o pojemności 25 cm³, to różnice między tym, co teoretycznie powinno być, a tym, co naprawdę dostajesz, są mega ważne dla precyzyjnych pomiarów. W tym przypadku pipeta faktycznie wypuszcza 0,104 g wody mniej, co daje nam tę poprawkę kalibracyjną 0,10 ml. W labie, kiedy używasz pipet do dozowania różnych substancji, musisz to uwzględnić, żeby wyniki były dokładne. W każdym laboratorium analitycznym kalibracja to standard. Bo każda nawet mała różnica w objętości może zmienić stężenie roztworu, a potem to prowadzi do błędnych wniosków. Dlatego fajnie jest regularnie sprawdzać i kalibrować pipety, żeby mieć pewność, że wyniki są wiarygodne i można je powtarzać.

Pytanie 33

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 99,99-99,999%
B. 99-99,9%
C. 90-99%
D. 99,9-99,99%
Odpowiedź 99-99,9% jest poprawna, gdyż odczynnik czysty (skrót: cz.) jest definiowany przez stopień czystości, który powinien mieścić się w określonym zakresie. Zgodnie z normami międzynarodowymi, substancje charakteryzujące się czystością w tym zakresie są uznawane za wysokiej jakości, co ma kluczowe znaczenie w takich dziedzinach jak chemia analityczna, farmacja czy przemysł spożywczy. W praktyce, substancje o czystości 99-99,9% mogą być wykorzystywane w wytwarzaniu leków, gdzie nawet niewielkie zanieczyszczenie może wpłynąć na skuteczność i bezpieczeństwo preparatu. Przykłady takich substancji to wiele reagentów używanych w laboratoriach, które muszą spełniać wysokie standardy czystości, aby zapewnić wiarygodne wyniki w badaniach. Ponadto, ogólnie przyjęte normy, takie jak ISO 9001, podkreślają znaczenie monitorowania i zapewniania jakości materiałów, co jest istotne w kontekście czystości chemicznej.

Pytanie 34

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. pierwotna laboratoryjna
B. jednostkowa
C. wtórna
D. średnia laboratoryjna
Odpowiedzi, które wskazują wtórną, jednostkową lub pierwotną laboratoryjną próbkę, opierają się na nieprecyzyjnych definicjach i nie są odpowiednie w kontekście analizy reprezentatywności prób. Wtórna próbka odnosi się często do próbki pobranej z próbki, co nie odzwierciedla pojęcia reprezentatywności całej partii produktu. Ponadto, jednostkowa próbka odnosi się do pojedynczego elementu i nie może dostarczyć informacji na temat całej grupy, co czyni ją niewłaściwą w kontekście analizy statystycznej. Z kolei pierwotna laboratoryjna próbka wskazuje na próbkę pobraną bezpośrednio z miejsca produkcji, ale również nie oddaje koncepcji reprezentatywności. W praktyce, stosowanie tych pojęć może prowadzić do błędnych wniosków dotyczących jakości produktów, co jest niezgodne z najlepszymi praktykami w zakresie kontroli jakości i analizy laboratoryjnej. Używanie niewłaściwych terminów może skutkować poważnymi konsekwencjami, w tym błędami w ocenie ryzyka, co jest kluczowe w wielu branżach, zwłaszcza w farmaceutycznej czy spożywczej. Zrozumienie różnic pomiędzy tymi pojęciami jest istotne dla zapewnienia skutecznych i wiarygodnych analiz oraz zgodności z międzynarodowymi standardami.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. H2SO4 i HCl w proporcji objętościowej 1:3
B. HNO3 i HCl w proporcji objętościowej 3:1
C. H2SO4 i HCl w proporcji objętościowej 3:1
D. HCl i HNO3 w proporcji objętościowej 3:1
Odpowiedź, że woda królewska jest mieszaniną HCl i HNO3 w stosunku objętościowym 3:1, jest poprawna. Woda królewska to silnie żrąca substancja, zdolna do rozpuszczania metali szlachetnych, takich jak złoto i platyna. Składa się głównie z kwasu solnego (HCl) i kwasu azotowego (HNO3), co czyni ją nieocenionym narzędziem w laboratoriach chemicznych oraz w przemyśle metalurgicznym. Stosunek 3:1 jest kluczowy, ponieważ zapewnia odpowiednie proporcje kwasów, które umożliwiają ich synergiczne działanie, gdzie HCl dostarcza jony chlorowe, a HNO3 przyczynia się do utleniania metali. W praktyce, woda królewska jest często wykorzystywana do analizy chemicznej i przygotowywania próbek do dalszych badań, a także w procesach oczyszczania metali. W branży laboratoryjnej przestrzeganie standardów bezpieczeństwa jest niezbędne, ponieważ zarówno HCl, jak i HNO3 są substancjami niebezpiecznymi, a ich mieszanie wymaga ostrożności oraz stosowania odpowiednich środków ochrony osobistej, takich jak rękawice i okulary ochronne.

Pytanie 39

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 14,5 g
B. 24,5 g
C. 39,4 g
D. 9,6 g
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.

Pytanie 40

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. domieszką
B. matrycą
C. śladem
D. ultraśladem
Termin 'ślad' odnosi się do składników, których stężenie w próbce jest bardzo niskie, wynoszące mniej niż 0,01%. W praktyce oznacza to, że substancje te mogą być trudne do wykrycia, ale mimo to mogą mieć istotny wpływ na właściwości analityczne próbki. Przykładem mogą być zanieczyszczenia w próbkach chemicznych, gdzie obecność nawet śladowych ilości metali ciężkich, takich jak ołów czy kadm, może prowadzić do poważnych konsekwencji zdrowotnych. W standardach takich jak ISO 17025, które dotyczą kompetencji laboratoriów badawczych, uwzględnia się konieczność analizy i raportowania takich śladowych składników, aby zapewnić pełną zgodność z normami jakości. W związku z tym, zrozumienie, co oznacza 'ślad', jest kluczowe dla analityków, którzy muszą być świadomi wpływu tych substancji na wyniki badań oraz jakość produktów końcowych. Warto także zwrócić uwagę, że w niektórych dziedzinach, takich jak toksykologia czy chemia środowiskowa, detekcja śladowych substancji jest kluczowa dla monitorowania zanieczyszczeń i ochrony zdrowia publicznego.