Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 22 maja 2025 20:05
  • Data zakończenia: 22 maja 2025 20:20

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką precyzję graficzną można osiągnąć dla mapy o skali 1:2000, jeśli średni błąd lokalizacji elementu terenowego na tej mapie wynosi ±0,1 mm w skali mapy?

A. ±0,02 m
B. ±0,2 m
C. ±2 m
D. ±0,002 m
Odpowiedź ±0,2 m jest prawidłowa, ponieważ w skali 1:2000, błąd średni położenia szczegółu terenowego wynoszący ±0,1 mm w skali mapy przekłada się na rzeczywiste wymiary w terenie. Aby obliczyć błąd w rzeczywistości, należy przeliczyć błąd w milimetrach na metry. W tym przypadku, przeliczenie polega na pomnożeniu wartości błędu na mapie przez odwrotność skali: ±0,1 mm * 2000 = ±200 mm, co w przeliczeniu na metry daje ±0,2 m. Zastosowanie precyzyjnych pomiarów i obliczeń jest kluczowe w geodezji, a ta wiedza jest niezbędna w praktycznych zastosowaniach, takich jak tworzenie map topograficznych czy planowanie przestrzenne. W geodezji obowiązują określone standardy dotyczące dokładności, a rozumienie skali i błędów pomiarowych to fundament, na którym opiera się cała dziedzina. Większość profesjonalnych projektów geodezyjnych uznaje dokładność na poziomie ±0,2 m jako akceptowalną dla map w tej skali, co podkreśla znaczenie precyzyjnych pomiarów i wiedzy w tej branży.

Pytanie 2

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. do celów projektowych
B. katastralnych
C. do celów prawnych
D. uzupełniających
Odpowiedzi katastralne, uzupełniające oraz do celów projektowych, mimo iż mogą wydawać się związane z kartografią nieruchomości, nie odpowiadają na pytanie o regulację stanu prawnego. Mapy katastralne są narzędziem administracyjnym służącym do ewidencji gruntów i budynków, jednak ich głównym celem nie jest bezpośrednia regulacja stanu prawnego, lecz zapewnienie dostępu do informacji o nieruchomościach dla celów podatkowych i planistycznych. Mapy uzupełniające z kolei mają charakter pomocniczy, służąc do dostarczania dodatkowych informacji kontekstowych, ale nie są kluczowe w kontekście formalnego stanu prawnego nieruchomości. Natomiast mapy do celów projektowych skupiają się na planowaniu i projektowaniu przestrzennym, co również nie odnosi się bezpośrednio do regulacji stanu prawnego. Często błędne jest utożsamianie map katastralnych i projektowych z mapami do celów prawnych, co może prowadzić do nieporozumień w kontekście ich użycia w obrocie nieruchomościami. Zrozumienie różnicy między tymi rodzajami map jest istotne dla prawidłowego działania w dziedzinie geodezji i kartografii.

Pytanie 3

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -3,043 m
B. +4,055 m
C. +3,043 m
D. -4,055 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 4

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Plac zabaw.
B. Ogrodzenie stałe.
C. Sygnał drogowy.
D. Przyłącze wodociągowe
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 5

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,004 m
B. 0,01 m
C. 0,001 m
D. 0,02 m
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 6

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. zasadniczą
B. przeglądową
C. topograficzną
D. klasyfikacyjną
Wybór mapy topograficznej jako podstawy do założenia osnowy pomiarowej jest nieodpowiedni, ponieważ mapa topograficzna, mimo że przedstawia ukształtowanie terenu w szerszym kontekście, nie zawiera wystarczająco szczegółowych informacji o granicach działek czy infrastrukturze niezbędnych do precyzyjnego zakupu osnowy. Może to prowadzić do błędów w lokalizacji punktów pomiarowych oraz do nieścisłości w dalszych pracach geodezyjnych. Z kolei mapa przeglądowa, z założenia służąca do ogólnej orientacji przestrzennej, również nie dostarcza wystarczających szczegółów, co może skutkować niepoprawnym określeniem granic działek oraz nieodpowiednią lokalizacją punktów osnowy. Zastosowanie mapy klasyfikacyjnej, która skupia się na podziale terenu na różne klasy użytkowania, nie ma praktycznego zastosowania w kontekście zakładania osnowy pomiarowej. Dobrą praktyką jest korzystanie z mapy zasadniczej, która dostarcza precyzyjnych informacji nie tylko o ukształtowaniu terenu, ale także o wszelkich istotnych elementach, które mogą mieć wpływ na pomiary geodezyjne. Wybór niewłaściwej mapy może prowadzić do poważnych problemów w dalszych etapach projektu, w tym do błędów w pomiarach oraz w szacunkach dotyczących obszarów i wymagań dotyczących budowy.

Pytanie 7

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. kontrolne
B. wiążące
C. odniesienia
D. kontrolowane
Wybór odpowiedzi związanej z punktami kontrolnymi może wynikać z mylnego zrozumienia roli, jaką te punkty pełnią w kontekście monitorowania obiektów. Punkty kontrolne są rzeczywiście używane w geodezji, jednak ich funkcja jest nieco inna. Służą one głównie jako odniesienie dla pomiarów, a nie jako punkty, które samodzielnie sygnalizują zmiany w położeniu obiektu. Z kolei odpowiedzi takie jak 'punkty odniesienia' i 'punkty wiążące' mogą mylnie sugerować, że chodzi o lokalizacje, które mają jedynie znaczenie orientacyjne lub są związane z innymi procesami. W praktyce, punkty odniesienia są statycznymi punktami, które służą do pomocy w lokalizacji innych obiektów, ale nie są same w sobie zaprojektowane do monitorowania zmian. Typowym błędem myślowym jest pomylenie funkcji monitorowania z funkcją lokalizacji; można uznać, że skoro punkty są używane w procesach pomiarowych, to automatycznie pełnią taką samą rolę w kontekście obserwacji zmian. W rzeczywistości, dla skutecznego monitorowania, niezbędne jest użycie punktów kontrolowanych, które są zaprojektowane do dokładnego śledzenia przemieszczeń i deformacji obiektów w określonym czasie.

Pytanie 8

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 3557,00 m
B. 357,00 m
C. 557,00 m
D. 3057,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 9

Na podstawie informacji zawartych w dzienniku oblicz wysokość osi celowej na stanowisku drugim (w kolumnie 8).

A. 303,971 m
B. 303,387 m
C. 303,919 m
D. 303,946 m
Wybór innych wartości, takich jak 303,946 m, 303,387 m lub 303,971 m, może wynikać z nieprawidłowego zrozumienia procesu pomiarowego oraz zasadności użycia konkretnej wysokości osi celowej. Często mylone są pojęcia związane z wysokością nad poziomem morza oraz wysokością właściwą, co prowadzi do nieprecyzyjnych oszacowań. Istotne jest, aby zrozumieć, że każda wysokość osi celowej musi być obliczana na podstawie dokładnych danych z dziennika pomiarów, który zawiera informacje o wszystkich istotnych parametrach, takich jak różnice poziomów oraz współrzędne punktów. Problemy mogą również wynikać z błędów w odczycie lub interpretacji danych. Na przykład, pomijanie istotnych szczegółów z dziennika pomiarów, takich jak aktualizacje czy korekty, może prowadzić do wyboru niewłaściwej wartości. Należy także zwrócić uwagę na techniczne aspekty, takie jak kalibracja sprzętu pomiarowego, która jest kluczowa do uzyskania wiarygodnych wyników. W praktyce, pomiar wysokości osi celowej powinien być przeprowadzany wielokrotnie, aby zminimalizować ryzyko błędów, a uzyskane wyniki powinny być weryfikowane w kontekście istniejących danych geodezyjnych oraz standardów branżowych.

Pytanie 10

W jakim dokumencie powinny zostać zapisane wyniki pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym?

A. Mapie zasadniczej
B. Szkicu polowym
C. Dokumencie topograficznym
D. Raporcie technicznym
Zarządzanie dokumentacją pomiarową w geodezji jest kluczowym aspektem, jednak wybór niewłaściwego dokumentu do rejestracji wyników pomiarów liniowych może prowadzić do nieporozumień i problemów w dalszych pracach. Sprawozdanie techniczne jest bardziej kompleksowym dokumentem, który zazwyczaj obejmuje podsumowanie prac geodezyjnych, wyniki badań, analizy oraz wnioski. Umieszczanie wyników pomiarów liniowych, które nie zostały uwzględnione w dzienniku pomiarowym w sprawozdaniu technicznym, może skutkować ich zniekształceniem, gdyż sprawozdanie to powinno być oparte na pełnych i rzetelnych danych, a nie na przypadkowych zapisach. Mapa zasadnicza, z kolei, jest oficjalnym dokumentem geodezyjnym, który przedstawia szczegółowe informacje o zagospodarowaniu terenu, granicach działek oraz infrastrukturze, a dodawanie nieudokumentowanych wyników pomiarów mogłoby zafałszować jej dane i wprowadzić w błąd użytkowników. Opis topograficzny, choć również istotny, dotyczy bardziej ogólnego opisu ukształtowania terenu, a nie szczegółowych wyników pomiarów. W związku z tym, kluczowe jest zrozumienie, że każdy z tych dokumentów spełnia inną rolę i nie każdy nadaje się do rejestrowania nieudokumentowanych pomiarów liniowych. Odpowiednie podejście do dokumentacji pomiarowej zapewnia integralność i użyteczność danych w przyszłych analizach i projektach.

Pytanie 11

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 250 m
B. 150 m
C. 600 m
D. 400 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 12

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. poza obszarem wpływu monitorowanego obiektu
B. w obszarze wpływu monitorowanego obiektu
C. na monitorowanym obiekcie
D. w sąsiedztwie monitorowanego obiektu
Prawidłowa odpowiedź, czyli lokalizacja punktów odniesienia poza strefą oddziaływania monitorowanego obiektu, jest kluczowa dla poprawności pomiarów przemieszczeń pionowych. Punkty odniesienia powinny być umiejscowione w obszarze, który nie jest narażony na wpływ czynników wywołujących ruch monitorowanego obiektu, takich jak drgania, osiadanie lub przemieszczenia. Dzięki temu uzyskujemy stabilne i wiarygodne dane, które można wykorzystać do analizy zmian w długim okresie. Na przykład, w inżynierii lądowej, standardy takie jak Eurokod 7 zalecają, aby punkty odniesienia były umieszczone w lokalizacjach, które są z dala od wszelkich potencjalnych zakłóceń. Przykładem może być monitorowanie osiadania budynków; jeśli punkty referencyjne znajdują się w pobliżu, mogą być poddawane tym samym wpływom co obiekt, co zafałszuje wyniki pomiarów. W kontekście geodezji, takie podejście jest kluczowe do uzyskania precyzyjnych wyników, które są podstawą do podejmowania decyzji inżynieryjnych.

Pytanie 13

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 300÷400g
C. 100÷200g
D. 0÷100g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 14

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Liczba osób przeprowadzających pomiar
B. Typ używanego sprzętu pomiarowego
C. Metoda realizacji rysunku polowego
D. Planowana skala mapy
Wybór rodzaju sprzętu do pomiaru, liczby osób wykonujących pomiar oraz sposobu wykonania szkicu polowego nie ma bezpośredniego wpływu na gęstość i rozmieszczenie pikiet w kontekście pomiarów wysokościowych. Właściwy sprzęt jest oczywiście istotny dla uzyskania dokładnych wyników, jednak to nie on decyduje o tym, jak wiele pikiet należy umieścić w terenie. W zależności od wybranej metody pomiarowej, technologia może znacznie różnić się, ale każda z nich powinna być dostosowana do specyfiki mapy, a nie odwrotnie. Liczba osób wykonujących pomiar ma znaczenie w kontekście wydajności i tempa pracy, ale nie wpływa na rozmieszczenie pikiet. Zbyt mała lub zbyt duża liczba pracowników może prowadzić do nieefektywnego wykorzystania zasobów, ale sama koncepcja pomiaru nie zmienia się. Sposób wykonania szkicu polowego również jest ważny, ale to jego wykonanie zależy od wcześniej ustalonej gęstości pikiet, więc nie wpływa na nią bezpośrednio. Często pojawia się mylne przekonanie, że różne aspekty organizacyjne pomiarów mogą zdefiniować techniczne parametry, co prowadzi do nieporozumień w planowaniu pomiarów w terenie. W rzeczywistości, kluczowym czynnikiem determinującym gęstość pikiet pozostaje zamierzona skala mapy oraz szczegółowość informacji, które chcemy przekazać w końcowym produkcie.

Pytanie 15

Jeśli długość odcinka na mapie w skali 1:500 wynosi 20 cm, to jaka jest rzeczywista długość tego odcinka w terenie?

A. 50 m
B. 500 m
C. 1000m
D. 100 m
Odpowiedź 100 m jest poprawna, ponieważ w skali 1:500 każdy 1 cm na mapie reprezentuje 500 cm w rzeczywistości, co odpowiada 5 m. Aby obliczyć rzeczywistą długość odcinka, należy pomnożyć długość odcinka na mapie przez wartość skali. W tym przypadku: 20 cm (długość na mapie) x 500 cm (w rzeczywistości na 1 cm) = 10000 cm, co przelicza się na 100 m. Przykład zastosowania tej wiedzy można znaleźć w geodezji i kartografii, gdzie precyzyjne pomiary są niezbędne do tworzenia map i planów. Stosowanie skal w praktyce umożliwia inżynierom, architektom oraz planistom przestrzennym dokładne odwzorowywanie rzeczywistych odległości i powierzchni, co jest kluczowe dla efektywnego projektowania i realizacji inwestycji budowlanych oraz zarządzania przestrzenią. Wiedza ta jest również przydatna w czasie wędrówek czy nawigacji, gdzie umiejętność odczytywania map i przeliczania skal jest niezbędna dla bezpieczeństwa i orientacji w terenie.

Pytanie 16

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. inwentaryzacyjnej
B. zasadniczej
C. branżowej
D. topograficznej
Wybór inwentaryzacyjnej, branżowej lub topograficznej mapy jako podstawy do sporządzania projektu zagospodarowania terenu jest błędny z kilku powodów. Mapa inwentaryzacyjna, choć może zawierać istotne dane dotyczące istniejących budynków czy infrastruktury, nie jest wystarczająco szczegółowa ani kompleksowa w kontekście całościowego zagospodarowania działki. Mapa branżowa jest ukierunkowana na specyfikę danych w danym obszarze, na przykład instalacji wodno-kanalizacyjnych czy elektrycznych, co czyni ją niewłaściwą do ogólnego projektowania. Z kolei mapa topograficzna, chociaż pokazuje ukształtowanie terenu, nie zawiera szczegółowych informacji o granicach działek czy istniejącej infrastrukturze, co jest niezbędne w kontekście planowania przestrzennego. W praktyce, korzystanie z niewłaściwego typu mapy prowadzi do nieścisłości w projektach, co może skutkować opóźnieniami w procesie uzyskiwania pozwolenia na budowę. Zrozumienie różnicy pomiędzy rodzajami map oraz ich zastosowaniem w projektowaniu jest kluczowe dla każdego profesjonalisty w dziedzinie planowania przestrzennego i architektury.

Pytanie 17

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. numeru punktu osnowy, który jest opisywany
B. miar umożliwiających lokalizację znaku
C. nazwiska geodety, który sporządził opis
D. skali przygotowania opisu
Zauważyłem, że w innych odpowiedziach były ważne rzeczy, które są potrzebne do dobrego opisu topograficznego punktu osnowy. Każdy punkt musi mieć swój numer identyfikacyjny, bo to dzięki niemu można go łatwo zlokalizować i znaleźć w terenie. To jest naprawdę kluczowe w geodezji. Oprócz tego, potrzebne są też miary, żeby określić, jak się dotrzeć do znaku - mogą to być odległości czy kierunki do pobliskich punktów. W trudnych warunkach terenowych jasne wskazanie lokalizacji jest mega ważne. No i nie zapominaj, że dobrze jest podać nazwisko geodety, który opisał ten punkt, bo to gwarantuje odpowiedzialność i rzetelność dokumentów. Powinno się sprawdzić każdy opis przez odpowiedzialnego geodetę. Takie podejście zapewnia, że wszystko jest zgodne z normami. Zrozumienie, jak te wszystkie elementy się do siebie odnoszą, jest ważne dla sprawnego działania systemu osnowy geodezyjnej oraz jakości danych pomiarowych.

Pytanie 18

Która z metod nie jest przeznaczona do realizacji geodezyjnych sytuacyjnych pomiarów w terenie?

A. Wcięć kątowych
B. Domiarów prostokątnych
C. Punktów rozproszonych
D. Biegunowa
Wybór metod wcięć kątowych, biegunowej oraz domiarów prostokątnych może być mylący, ponieważ każda z tych technik ma swoje unikalne zastosowanie w geodezji, jednak w kontekście pomiarów sytuacyjnych przyczyniają się do precyzyjnego zbierania danych o terenie. Metoda wcięć kątowych polega na pomiarze kątów i odległości z jednego punktu do wielu innych punktów, co jest szczególne przy tworzeniu planów sytuacyjnych. Pozwala to na dokładne odwzorowanie układów przestrzennych, co jest kluczowe w geodezyjnych analizach. Z kolei metoda biegunowa, poprzez pomiary kątów i długości, może być wykorzystana do tworzenia rysunków sytuacyjnych w różnych typach terenu, a domiary prostokątne są używane do uzyskania współrzędnych punktów w układzie prostokątnym, co jest niezwykle pomocne w obszarach o regularnej zabudowie. W kontekście tych metod, nieprawidłowe odczytywanie ich zastosowania w geodezji może prowadzić do niewłaściwych wniosków na temat ich funkcjonalności. Kluczowym błędem jest mylenie zakresu zastosowań poszczególnych metod oraz ich skuteczności w kontekście geodezyjnych pomiarów sytuacyjnych. Dlatego ważne jest zrozumienie, że każda z wymienionych metod ma swoje miejsce i zastosowanie w geodezji, ale tylko w przypadku geodezyjnych pomiarów sytuacyjnych techniki takie jak wcięcia kątowe, biegunowa i domiary prostokątne faktycznie odgrywają istotną rolę.

Pytanie 19

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 100200g
B. 0100g
C. 200300g
D. 300400g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 20

W regionalnej części zbioru geodezyjnego i kartograficznego przechowywane są mapy topograficzne w skali

A. 1 : 300 000
B. 1 : 10 000
C. 1 : 500 000
D. 1 : 20 000
Odpowiedź 1: 1 : 10 000 jest poprawna, gdyż w wojewódzkiej części zasobu geodezyjnego i kartograficznego gromadzone są przede wszystkim mapy topograficzne w tej skali. Mapy w skali 1 : 10 000 są szczegółowymi przedstawieniami terenu, co pozwala na precyzyjne odwzorowanie obiektów oraz ich wzajemnych relacji. Tego typu mapy są wykorzystywane w planowaniu przestrzennym, urbanistyce oraz w działalności inwestycyjnej, gdzie niezbędna jest dokładna wiedza o infrastrukturze oraz ukształtowaniu terenu. W polskim prawodawstwie oraz normach geodezyjnych, takich jak „Rozporządzenie w sprawie szczegółowych zasad i trybu prowadzenia państwowego zasobu geodezyjnego i kartograficznego”, jasno określono, że skala 1 : 10 000 jest standardem, który pozwala na efektywne zarządzanie danymi geodezyjnymi. Dodatkowo, mapy te są kluczowe w sytuacjach kryzysowych, takich jak planowanie akcji ratunkowych czy zarządzanie katastrofami naturalnymi, dzięki czemu można szybko ocenić sytuację i podjąć odpowiednie działania.

Pytanie 21

Oś stanowiąca południki w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-1992 to południk

A. 17o
B. 19o
C. 21o
D. 15o
Wybór innych południków, jak 15o, 17o czy 21o, jest niestety błędny. Każdy z tych południków przydzielony jest do innej strefy w układzie Gaussa-Krugera, co mocno wpływa na to, jak dokładnie odwzorowujemy dane geograficzne w danym miejscu. Jeśli nie zrozumiesz podziału na strefy, łatwo o błędne obliczenia i interpretacje w geodezji. W systemie PL-1992 każda strefa ma przypisany swój południk centralny. Jak wybierasz zły południk, to masz zniekształcenia w odwzorowaniach przestrzennych. Poza tym, brak znajomości standardów geodezyjnych i technik analizy przestrzennej to dość powszechny błąd, który może prowadzić do poważnych problemów w planowaniu i realizacji projektów budowlanych. Źle wybrany południk to niepoprawne ustawienie systemu współrzędnych, co potem wpływa na lokalizację obiektów, ich wzajemne relacje i dokładność pomiarów. Zrozumienie, dlaczego wybór odpowiedniego południka w geodezji i planowaniu jest tak kluczowe, pomoże zapewnić rzetelność i precyzję wszelkich działań dotyczących przestrzeni.

Pytanie 22

Które z wymienionych obiektów przestrzennych są zaliczane do drugiej kategorii szczegółów terenowych?

A. Boiska sportowe
B. Ściany oporowe
C. Linie brzegowe
D. Tory kolejowe
Ściany oporowe, linie brzegowe oraz tory kolejowe, mimo że są istotnymi elementami infrastruktury, nie należą do drugiej grupy szczegółów terenowych, co może prowadzić do błędnych konkluzji. Ściany oporowe to struktury zaprojektowane w celu utrzymywania gruntów i zapobiegania erozji, a ich głównym celem jest stabilizacja terenu. Nie mają one bezpośredniego związku z rekreacją czy sportem, co wyklucza je z omawianej grupy. Linie brzegowe, będące granicami akwenów wodnych, również nie są obiektami, które spełniają funkcję aktywności fizycznej, chociaż są istotne w kontekście ekosystemów wodnych i ochrony środowiska. Tory kolejowe, z kolei, są infrastrukturą transportową, która związana jest z transportem lądowym i również nie wchodzi w skład terenów rekreacyjnych. Typowym błędem myślowym jest postrzeganie obiektów przestrzennych jako równorzędnych w kontekście ich funkcjonalności. W rzeczywistości, klasyfikacja obiektów terenowych powinna opierać się na ich zastosowaniu w codziennym życiu, co oznacza, że obiekty związane z infrastrukturą transportową i ochroną terenu nie są częścią grupy obiektów rekreacyjnych, jakimi są boiska sportowe. Zrozumienie tej klasyfikacji jest kluczowe dla prawidłowego planowania przestrzennego oraz podejmowania decyzji dotyczących inwestycji w infrastrukturę.

Pytanie 23

W której bazie danych państwowego zasobu geodezyjnego i kartograficznego można znaleźć informacje o podziemnych przewodach elektroenergetycznych?

A. BDOT500
B. EGiB
C. GESUT
D. BDSOG
GESUT, czyli Geodezyjna Ewidencja Sieci Uzbrojenia Terenu, to super ważna baza danych. Zawiera ona wszystkie info o infrastrukturze technicznej, w tym o podziemnych kablach elektrycznych. Jak się planuje nowe budowy, to istotne, żeby wiedzieć, gdzie co jest. Dzięki temu można uniknąć uszkodzeń sieci energetycznych, co przecież byłoby katastrofą. Projektanci i geodeci mogą korzystać z GESUT, żeby szybko znaleźć lokalizację i szczegóły dotyczące tych podziemnych przewodów, co jest mega pomocne w trakcie projektowania i budowania. Dodatkowo, standardy GESUT są zgodne z międzynarodowymi rozwiązaniami, co sprawia, że jest to naprawdę przydatne w dzisiejszych czasach, kiedy urbanistyka i inżynieria rozwijają się tak szybko.

Pytanie 24

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. szkiców polowych
C. wywiadów terenowych
D. obliczeń
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 25

Wyznacz wysokość reperu końcowego HK, jeśli wysokość reperu początkowego wynosi HP = 325,000 m, różnica wysokości na badanym odcinku wynosi AhP-K = 2500 mm, a poprawka ma wartość v∆h = -10 mm?

A. HK = 322,510 m
B. HK = 327,490 m
C. HK = 322,490 m
D. HK = 327,510 m
Aby obliczyć wysokość reperu końcowego HK, zaczynamy od wysokości reperu początkowego HP, która wynosi 325,000 m. Następnie dodajemy różnicę wysokości mierzonego odcinka, która wynosi AhP-K = 2500 mm, co przekłada się na 2,500 m. Ważnym krokiem jest uwzględnienie poprawki v∆h = -10 mm, co oznacza, że musimy odjąć tę wartość od uzyskanego wyniku. Zatem, obliczenia wyglądają następująco: HK = HP + AhP-K + v∆h = 325,000 m + 2,500 m - 0,010 m = 327,490 m. To podejście jest zgodne z praktykami w geodezji, w których dokładność pomiarów jest kluczowa. Wysokość reperów jest istotna w budownictwie i inżynierii lądowej, gdzie precyzyjne ustalanie poziomów jest niezbędne dla bezpieczeństwa i funkcjonalności budowli. Rekomenduje się regularne stosowanie takich obliczeń w praktyce inżynieryjnej, aby zapewnić zgodność z normami i standardami branżowymi.

Pytanie 26

Który z poniższych instrumentów geodezyjnych służy do pomiaru kątów poziomych i pionowych?

A. Niwelator
B. Inklinometr
C. Teodolit
D. Tachimetr
Niwelator jest instrumentem geodezyjnym, który służy głównie do wykonywania pomiarów wysokościowych. Używa się go przede wszystkim do określania różnic wysokości między punktami, co jest kluczowe przy niwelacji terenu. O ile niwelator jest nieoceniony przy pomiarach pionowych, nie jest narzędziem przeznaczonym do pomiaru kątów poziomych i pionowych, jak teodolit. Tachimetr to bardziej zaawansowane urządzenie, które łączy funkcje teodolitu i dalmierza, umożliwiając pomiary kątów oraz odległości. Choć tachimetry mogą również mierzyć kąty, ich głównym zastosowaniem jest szybkie i dokładne wykonywanie pomiarów terenowych, łącząc różne funkcje w jednym urządzeniu. Tachimetry są bardzo popularne, jednak nie są stricte przeznaczone tylko do pomiaru kątów, co różni je od teodolitów. Inklinometr, z kolei, to instrument używany do pomiaru nachylenia lub kąta w stosunku do poziomu odniesienia, ale nie do pomiaru kąta poziomego i pionowego. Może być stosowany w różnych dziedzinach, od geotechniki po przemysł naftowy, ale jego funkcja jest specyficzna i nie obejmuje pomiarów kątów w sposób, w jaki robi to teodolit. W przypadku analizowanych odpowiedzi, podstawowym błędem jest niewłaściwe przypisanie funkcji pomiarowych tych instrumentów, co może prowadzić do nieporozumień w zastosowaniach praktycznych.

Pytanie 27

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli rurkowej
B. kolimacji
C. libeli pudełkowej
D. inklinacji
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 28

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 2,0 m
B. s = 1,9 m
C. s = 1,8 m
D. s = 1,7 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 29

Jaki wzór powinien być użyty do obliczenia sumy kątów wewnętrznych w zamkniętym poligonie?

A. [β]t = (n + 2) · 200g
B. [β]t = Ap – Ak + n · 200g
C. [β]t = (n - 2) · 200g
D. [β]t = Ak – Ap + n · 200g
Wzór [β]t = (n - 2) · 200g jest kluczowy do obliczenia sumy kątów wewnętrznych w poligonie zamkniętym, gdzie n oznacza liczbę boków. W przypadku wielokątów, suma kątów wewnętrznych wynika z faktu, że każdy dodatkowy bok wprowadza dodatkowe kąty. W praktyce, dla trójkąta, który ma 3 boki, suma kątów wynosi 180°, co odpowiada wzorowi (3 - 2) · 180° = 180°. Dla czworokąta (4 boki) suma kątów wynosi 360° – (4 - 2) · 180° = 360°. Wzór ten jest szeroko stosowany w geometrii i architekturze, a także w inżynierii, gdzie dokładne obliczenia kątów są niezbędne do projektowania struktur. Zrozumienie tego wzoru pozwala na lepsze planowanie i realizację projektów, a także unikanie błędów konstrukcyjnych.

Pytanie 30

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
B. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
C. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
D. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
Wykonywanie pomiarów w celu określenia współrzędnych i wysokości punktów osnowy jest zadaniem, które nie należy do kompetencji Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (PODGiK). Główne zadania tego ośrodka koncentrują się na ewidencjonowaniu, zarządzaniu oraz udostępnianiu danych geodezyjnych i kartograficznych, a nie na samodzielnym przeprowadzaniu pomiarów. Punkty osnowy geodezyjnej są zazwyczaj określane przez wyspecjalizowane jednostki, takie jak przedsiębiorstwa geodezyjne, które realizują pomiary zgodnie z obowiązującymi normami, na przykład PN-EN ISO 19111 dotyczących systemów odniesienia i pomiarów. Ośrodki te koncentrują się na tworzeniu i utrzymywaniu zasobów geodezyjnych, co jest kluczowe dla prawidłowego funkcjonowania planowania przestrzennego oraz wielu innych dziedzin, takich jak budownictwo, infrastruktura czy ochrona środowiska. Przykładem praktycznego zastosowania wiedzy w tym zakresie może być współpraca PODGiK z lokalnymi samorządami, które polegają na dostępie do dokładnych i aktualnych map oraz danych geodezyjnych do celów planistycznych.

Pytanie 31

Jakie prace geodezyjne zawsze wymagają przeprowadzenia wywiadu terenowego oraz przygotowania mapy porównawczej z rzeczywistością?

A. Pomiar objętości mas ziemnych
B. Pomiar kontrolny wychylenia komina
C. Obsługę inwestycji budowlanej
D. Aktualizację bazy danych obiektów topograficznych i mapy zasadniczej
Aktualizacja bazy danych obiektów topograficznych oraz mapy zasadniczej to proces, który zawsze wymaga przeprowadzenia wywiadu terenowego oraz przygotowania mapy porównawczej z terenem. Wywiad terenowy polega na zbieraniu informacji o aktualnym stanie obiektów w terenie oraz ich zmianach, co pozwala na dokładne odzwierciedlenie rzeczywistej sytuacji w systemach informacji geograficznej (GIS). Przykładem zastosowania tej praktyki mogą być projekty związane z urbanizacją, gdzie zmiany w infrastrukturze, takie jak nowe drogi czy budynki, muszą być uwzględnione w aktualizowanych mapach. Standardy, takie jak INSPIRE w Europie, nakładają obowiązek regularnego aktualizowania danych przestrzennych, co podkreśla znaczenie rzetelnego wywiadu terenowego przed przystąpieniem do aktualizacji. Dobre praktyki branżowe wskazują, że dokładne przygotowanie mapy porównawczej z terenem ułatwia identyfikację różnic oraz weryfikację jakości danych, co jest kluczowe dla zapewnienia wiarygodności i użyteczności systemów GIS.

Pytanie 32

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. bezpośrednio na analizowanym obiekcie
B. w bezpośredniej bliskości analizowanego obiektu
C. jak najdalej od analizowanego obiektu
D. jak najbliżej punktów odniesienia dotyczących badanego obiektu
Umieszczanie punktów kontrolnych jak najbliżej punktów odniesienia, jak również jak najdalej od badanego obiektu, jest koncepcją, która w praktyce prowadzi do poważnych błędów w pomiarach. Bliskie umiejscowienie punktów odniesienia może wpłynąć na ich stabilność, natomiast umiejscowienie z dala od obiektu ogranicza zdolność do precyzyjnego monitorowania jego przemieszczeń. Takie podejście może prowadzić do błędów pomiarowych, które są trudne do zidentyfikowania. W praktyce, kluczowe jest, aby punkty kontrolne były umieszczone w miejscach, które najlepiej oddają rzeczywiste przemieszczenia obiektu, a nie w ich pobliżu, co bywa mylone z dokładnością. Z kolei umieszczanie punktów kontrolnych na badanym obiekcie pozwala na dokładną lokalizację przemieszczeń i umożliwia ich efektywne monitorowanie. Użytkownicy często popełniają błąd, myśląc, że oddalenie punktów kontrolnych od obiektu zwiększa ich niezawodność, co jest nieprawdziwe, gdyż taka praktyka może prowadzić do utraty krytycznych danych o stanie konstrukcji. Również umieszczanie punktów kontrolnych w bezpośredniej bliskości obiektu, ale nie na nim, może prowadzić do nieadekwatnych odczytów w sytuacji, gdy obiekt ulega deformacji w sposób nierównomierny. W związku z tym, przestrzeganie standardów oraz dobrych praktyk branżowych jest kluczowe dla zapewnienia wysokiej jakości pomiarów i monitorowania obiektów budowlanych.

Pytanie 33

Jakie kryterium musi zostać zrealizowane dla poprawek po wyrównaniu zmierzonych wartości o różnej dokładności, przy założeniu, że v to poprawka, a p to waga zmierzonej wartości?

A. [pv] = min
B. [pv] = max
C. [pvv] = min
D. [pvv] = max
Odpowiedź [pvv] = min. jest prawidłowa, ponieważ przy wyrównywaniu pomierzonych wielkości, które różnią się dokładnością, kluczowym celem jest minimalizacja błędów pomiarowych. Poprawki, oznaczane jako v, powinny być takie, aby całkowita suma ważonych błędów była jak najmniejsza. W praktyce oznacza to, że dla pomiarów o różnych wagach (p), suma ważonych poprawek powinna dążyć do minimum, co pozwala na uzyskanie najbardziej wiarygodnych i precyzyjnych wyników. Na przykład, w laboratoryjnych pomiarach chemicznych, gdzie dokładność pomiarów jest kluczowa, stosuje się metody statystyczne, takie jak metoda najmniejszych kwadratów. Standardy ISO 5725-1 podkreślają znaczenie tego podejścia w ocenie dokładności pomiarów. W sytuacjach, gdy pomiary są obarczone różnymi stopniami niepewności, stosowanie takich poprawek pozwala na lepsze uśrednienie wyników, co jest szczególnie korzystne w badaniach naukowych oraz w procesach przemysłowych, gdzie precyzja ma kluczowe znaczenie dla uzyskania wysokiej jakości produktów.

Pytanie 34

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. topograficznej
B. klasyfikacyjnej
C. sozologicznej
D. zasadniczej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 35

Jeśli azymut A1-2 wynosi 327°12’35’’, to jaki jest azymut odwrotny A2-1?

A. 147°12’35’’
B. 127°12’35’’
C. 527°12’35’’
D. 507°12’35’’
Widać, że przy obliczaniu azymutu odwrotnego pojawił się pewien bałagan. Niektórzy mogą nie zauważyć, że jak A1-2 to 327°12’35’’, to dodanie 180° do tego nie kończy sprawy, zwłaszcza jak wynik wychodzi 507°12’35’’. Takie wartości nie mogą być przyjmowane ot tak, bo azymut powinien być w granicach 0°-360°. Kiedy przekroczymy tę granicę, trzeba odjąć 360°, by wszystko się zgadzało. No i jeśli poszło 127°12’35’’, to tu z kolei wkradł się błąd w dodawaniu, ale pewnie też nie do końca dobrze zrozumiano zasady. Pamiętaj, że azymuty zawsze bierzemy od północy i trzymamy się tych konwencji. Typowe błędy to brak korekty wartości azymutów i nielogiczne przekształcenia. W praktyce nawigacyjnej dla precyzyjnych wyników musisz znać zasady obliczeń azymutów i ich odwrotności.

Pytanie 36

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 3000 mm
B. 0300 mm
C. 0030 mm
D. 1300 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 37

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. rejestru cen oraz wartości nieruchomości
B. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
C. geodezyjnej ewidencji infrastruktury terenowej
D. ewidencji gruntów i budynków (katastru nieruchomości)
Niepoprawne odpowiedzi nawiązuą do różnych aspektów zarządzania danymi geodezyjnymi, jednak żadna z nich nie odnosi się bezpośrednio do centralnego zasobu geodezyjnego i kartograficznego w kontekście podstawowych osnów geodezyjnych. Rejestr cen i wartości nieruchomości, choć istotny w obszarze wyceny i obrotu nieruchomościami, nie jest związany bezpośrednio z fundamentami geodezji, a tym samym nie odzwierciedla kluczowych danych potrzebnych do precyzyjnych pomiarów przestrzennych. Ewidencja gruntów i budynków, znana również jako kataster, koncentruje się na dokumentacji własności i użytkowania gruntów, co jest ważne, ale nie obejmuje danych geodezyjnych dotyczących osnów. Geodezyjna ewidencja sieci uzbrojenia terenu natomiast dotyczy infrastruktury podziemnej, takiej jak wodociągi czy sieci elektryczne, a nie zasadniczych punktów odniesienia. Każda z tych pomyłek wynika z błędnego rozumienia roli centralnego zasobu geodezyjnego oraz jego znaczenia w kontekście precyzyjnego pomiaru i lokalizacji obiektów. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że ustalenie osnów geodezyjnych jest fundamentem dla wszystkich innych danych geodezyjnych i kartograficznych, na których opierają się analizy przestrzenne i planowanie.

Pytanie 38

Przeprowadzono dwa różne pomiary długości odcinka L1 oraz L2, które charakteryzują się odmienną precyzją. Każdemu z tych pomiarów nadano inną wagę p:

L1 = 20,000 m, p1 = 3
L2 = 20,050 m, p2 = 2

Jaką długość można uznać za najbardziej prawdopodobną dla tego odcinka?

A. 20,000 m
B. 20,025 m
C. 20,010 m
D. 20,020 m
Analizując podane odpowiedzi, warto zwrócić uwagę na przyczyny, dla których inne opcje są niepoprawne. Odpowiedzi 20,010 m oraz 20,000 m ignorują wagi przypisane do pomiarów L1 i L2, co jest kluczowe w procesie wyznaczania najbardziej prawdopodobnej wartości. Przyjmowanie wartości średnich bez uwzględnienia dokładności pomiarów prowadzi do zniekształcenia wyników. Na przykład, 20,000 m to wartość jednego z pomiarów, ale nie bierze pod uwagę, że pomiar L2, mimo że mniej dokładny, jest bliższy rzeczywistej długości odcinka. Z kolei 20,010 m jest bliskie wartości średniej, jednak nie uwzględnia proporcji wag, co jeszcze bardziej oddala tę wartość od dokładnej odpowiedzi. Użytkownicy często popełniają błąd polegający na traktowaniu wszystkich pomiarów jako równoważnych, co jest błędne w kontekście metod statystycznych. Ważenie pomiarów jest fundamentalne dla uzyskania rzetelnych wyników, a w praktyce powinno się zawsze dążyć do uwzględnienia różnorodności w dokładności pomiarów. Ostatecznie, błędne podejścia do analizy danych pomiarowych mogą prowadzić do podejmowania decyzji, które opierają się na nieprzemyślanych lub zniekształconych informacjach, co w kontekście inżynieryjnym może mieć poważne skutki. Dlatego tak istotne jest, aby przy wyznaczaniu wartości średnich stosować metody, które uwzględniają wagi oraz dokładność pomiarów.

Pytanie 39

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. kolimacji
B. pionu optycznego
C. urządzenia odczytowego
D. libelli okrągłej
Wybór odpowiedzi dotyczącej "pionu optycznego" jest nietrafiony, ponieważ pion optyczny odnosi się do instrumentu, który wykorzystuje zjawisko grawitacji do ustalenia linii pionowej. Pomiary kątów nie są bezpośrednio związane z pionem optycznym, a jego użycie nie eliminuje błędów związanych z ustawieniem lunety. Używanie libelli okrągłej jest również niewłaściwe w tym kontekście. Libella służy do ustalania poziomu, ale nie ma zastosowania w eliminacji błędów pomiarowych związanych z kolimacją lunety. Kolejną błędną koncepcją jest wskazanie na "urządzenie odczytowe". To pojęcie odnosi się do mechanizmu do odczytu wyników pomiarowych, a jego poprawność nie wpływa na kolimację lunety, która jest kluczowym elementem w precyzyjnych pomiarach kątowych. Często błędne wnioski wynikają z mylnego zrozumienia funkcji różnych instrumentów pomiarowych oraz ich wzajemnych relacji. Ważne jest, aby właściwie rozumieć, w jaki sposób różnorodne narzędzia wspierają proces pomiarowy, aby uniknąć nieporozumień i błędnych interpretacji.

Pytanie 40

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. technicznego
B. pomiarowego
C. katastralnego
D. szacunkowego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.