Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 maja 2025 12:31
  • Data zakończenia: 15 maja 2025 12:47

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie przepisy prawne dotyczą zarządzania odpadami niebezpiecznymi?

A. Ustawa dotycząca budownictwa
B. Ustawa o zamówieniach publicznych
C. Ustawa o odpadach
D. Ustawa o energetyce
Ustawa o odpadach jest kluczowym aktem prawnym regulującym gospodarkę odpadami niebezpiecznymi w Polsce. Ustawa ta również implementuje dyrektywy unijne dotyczące zarządzania odpadami, w szczególności odpady niebezpieczne, co pozwala na harmonizację przepisów krajowych z normami europejskimi. Główne zasady wynikające z tej ustawy obejmują klasyfikację odpadów, obowiązki producentów oraz sposoby ich zbierania, transportu, przechowywania i unieszkodliwiania. Przykładem zastosowania tych przepisów jest konieczność posiadania odpowiednich zezwoleń na transport i unieszkodliwianie odpadów niebezpiecznych, które muszą być zgodne z wymaganiami ustawy. Dobre praktyki w zakresie gospodarki odpadami niebezpiecznymi obejmują również prowadzenie ewidencji tych odpadów, co pozwala na lepsze zarządzanie i kontrolę nad nimi. W kontekście międzynarodowym, Polska jest zobowiązana do przestrzegania konwencji takich jak Konwencja Bazylejska, co podkreśla znaczenie Ustawy o odpadach w kontroli i minimalizacji negatywnego wpływu na środowisko.

Pytanie 2

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor bipolarny
B. Tyrystor
C. Trymer
D. Tranzystor unipolarny
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 3

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. Z80
B. NE555
C. UL7805
D. SN74151
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 4

W jaki sposób można usunąć dane z pamięci EPROM, aby ponownie ją zaprogramować?

A. Umieszczając układ pamięci w promieniowaniu podczerwonym
B. Podając odpowiedni sygnał logiczny na wejście Write Enable
C. Podając odpowiedni sygnał logiczny na wejście CLR
D. Umieszczając układ pamięci w promieniowaniu ultrafioletowym
Odpowiedź 'Umieszczając układ pamięci w świetle ultrafioletowym' jest prawidłowa, ponieważ EPROM (Erasable Programmable Read-Only Memory) jest specjalnym rodzajem pamięci, która może być wielokrotnie programowana i kasowana. Proces kasowania EPROM polega na naświetlaniu go światłem ultrafioletowym, które powoduje, że zera logiczne, czyli zapamiętane wartości, są przywracane do stanu nieustalonego. W praktyce, układ EPROM umieszczany jest w dedykowanej lampie UV, która emituje promieniowanie o odpowiedniej długości fali, zazwyczaj około 254 nm. Po naświetleniu, cała zawartość pamięci jest usuwana, co umożliwia ponowne zaprogramowanie układu. Zastosowania EPROM są szerokie, obejmują między innymi pamięć w urządzeniach elektronicznych, sprzęcie pomiarowym oraz w systemach wbudowanych, gdzie konieczne jest czasowe przechowywanie danych, które mogą być później zmieniane. Standardowe praktyki branżowe nakazują stosowanie odpowiednich osłon podczas obsługi lamp UV oraz przestrzeganie procedur bezpieczeństwa, aby zminimalizować ryzyko uszkodzenia układu lub zranienia operatora.

Pytanie 5

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. NO
B. COM
C. IN
D. NC
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. A.
B. D.
C. B.
D. C.
Poprawna odpowiedź to D, ponieważ spełnia wymogi logicznej funkcji F(abc). Aby funkcja przyjęła wartość "1", musimy mieć a=1, b̅=1 (co oznacza, że b=0) oraz c=1. Oznacza to, że dla kombinacji D (a=1, b=0, c=1) wszystkie warunki są spełnione, co daje wynik mnożenia logicznego równy 1. W praktycznych zastosowaniach wiedza o funkcjach logicznych jest kluczowa w inżynierii cyfrowej, szczególnie w projektowaniu układów przełączających w systemach elektronicznych. Na przykład, układy te są często wykorzystywane w systemach automatyki przemysłowej, gdzie odpowiednie sygnały muszą być ze sobą skorelowane, aby aktywować określone urządzenia. Przestrzeganie standardów takich jak IEC 61131-3 jest istotne, aby zapewnić spójność i niezawodność operacyjną w układach programowalnych. W związku z tym, zrozumienie tego zagadnienia jest niezbędne dla każdego inżyniera pracującego w dziedzinie automatyki i elektroniki.

Pytanie 8

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 100 mV
B. 300 mV
C. 1000 mV
D. 150 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Brak obrazu na ekranie wideodomofonu może być spowodowany

A. usterką podświetlaczy IRED kamery
B. polem elektromagnetycznym w okolicy sprzętu
C. awarią elektrozaczepu
D. zwarciem przewodu sygnałowego
Zwarcie kabla sygnałowego jest jednym z najczęstszych problemów, które mogą prowadzić do braku obrazu na monitorze wideodomofonu. Kabel sygnałowy, odpowiedzialny za przesyłanie danych wideo między kamerą a wyświetlaczem, może ulec uszkodzeniu, na przykład w wyniku nieprawidłowego montażu, zbyt dużego napięcia, lub kontaktu z wodą. W przypadku zwarcia sygnał jest zakłócony, co uniemożliwia poprawne przesyłanie obrazu. Praktycznym przykładem może być sytuacja, gdy instalacja była prowadzona w trudnych warunkach atmosferycznych, co zwiększa ryzyko uszkodzenia kabli. W branży zaleca się stosowanie kabli o odpowiedniej klasyfikacji i wysokiej odporności na czynniki zewnętrzne, a także regularne przeprowadzanie testów i inspekcji instalacji, aby upewnić się, że system działa prawidłowo. Warto też stosować standardy takie jak ISO/IEC 11801 dotyczące okablowania strukturalnego, aby zapewnić wysoką jakość i niezawodność instalacji.

Pytanie 11

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyrównać
B. zwiększyć
C. zmniejszyć
D. wyzerować
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. usunąć poszkodowanego spod wpływu prądu
B. ocenić parametry życiowe poszkodowanego
C. ustawić poszkodowanego w stabilnej pozycji bocznej
D. położyć poszkodowanego na brzuchu z głową odchyloną na bok
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć poziom sygnału w kanale zwrotnym
B. analizować parametry sygnału przy użyciu analizatora widma
C. zmierzyć impedancję falową kabla
D. zbadać parametry kabla za pomocą reflektometru
Reflektometria jest kluczowym narzędziem do lokalizacji przerwań w kablach sygnałowych, w tym kabli telewizji kablowej. Reflektometr mierzy czas, w jakim sygnał wraca do urządzenia po odbiciu od przeszkód lub przerw w kablu. Dzięki temu technik może zidentyfikować miejsce przerwania, analizując charakterystykę odbicia sygnału w funkcji odległości. W praktyce, stosując reflektometr, technik może szybko zlokalizować problem, co pozwala na szybszą interwencję i minimalizację przestojów w dostępie do usług telewizyjnych. Jest to standard w branży, ponieważ umożliwia dokładną diagnozę i zmniejsza koszty związane z nieefektywną naprawą. Ponadto, reflektometria pozwala na ocenę innych parametrów kabla, takich jak straty sygnału czy impedancja, co daje pełny obraz stanu infrastruktury. Właściwe stosowanie tej metody jest zgodne ze standardami branżowymi, które podkreślają znaczenie precyzyjnych pomiarów w utrzymaniu jakości usług telewizyjnych.

Pytanie 17

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. hydronetki wodnej
B. gaśnicy pianowej
C. gaśnicy proszkowej
D. koca azbestowego
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik tensometryczny
B. Czujnik hallotronowy
C. Czujnik magnetyczny
D. Czujnik pojemnościowy
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. okulary ochronne
B. fartuch bawełniany
C. buty na izolowanej podeszwie
D. rękawice ochronne
Fartuch bawełniany jest kluczowym elementem odzieży ochronnej podczas prac serwisowych w elektronice, w tym wylutowywaniu podzespołów elektronicznych. Jego główną funkcją jest ochrona użytkownika przed zanieczyszczeniem, odpadami chemicznymi oraz drobnymi elementami, które mogą być uwolnione podczas prac serwisowych. Fartuch bawełniany jest wykonany z materiału, który jest odporny na wysoką temperaturę, co jest istotne, gdy używamy lutownicy lub innych narzędzi wymagających wysokiej temperatury. Dodatkowo, bawełna jest materiałem przewiewnym, co zapewnia komfort podczas długotrwałej pracy. Ponadto, zgodnie z normami BHP, fartuch powinien być odpowiednio zapinany oraz wystarczająco długi, aby chronić ciało przed potencjalnymi uszkodzeniami. W praktyce stosowanie fartucha bawełnianego jest zgodne z zaleceniami dotyczącymi zasad bezpieczeństwa w miejscu pracy, co znacząco zmniejsza ryzyko wystąpienia urazów.

Pytanie 23

Aby oczyścić soczewkę lasera w napędzie CD, należy zastosować

A. wodę destylowaną
B. izopropanol
C. benzynę ekstrakcyjną
D. denaturat
Izopropanol jest powszechnie używanym rozpuszczalnikiem do czyszczenia soczewek lasera w napędach CD, ponieważ skutecznie usuwa zanieczyszczenia, takie jak pył, odciski palców czy inne substancje organiczne, nie pozostawiając resztek. W przeciwieństwie do innych substancji, izopropanol szybko paruje, co minimalizuje ryzyko uszkodzenia wrażliwych komponentów podzespołów. W przemyśle elektronicznym i serwisach zajmujących się naprawą sprzętu audio-wideo, izopropanol jest standardem w procesach konserwacyjnych. Zaleca się stosować roztwór o stężeniu co najmniej 91%, aby zapewnić maksymalną efektywność w usuwaniu zanieczyszczeń. Przykładowo, podczas konserwacji napędu, należy nawilżyć bawełnianą szmatkę izopropanolem i delikatnie przetrzeć soczewkę, co nie tylko przywróci jej czystość, ale również poprawi jakość odczytu danych. Dobrą praktyką jest unikanie nadmiaru cieczy oraz stosowanie odpowiednich narzędzi, aby nie uszkodzić delikatnych komponentów napędu.

Pytanie 24

Oznaczenie wiązki przewodów na schemacie elektrycznym 2xYDY3xl,5 mm2 sugeruje, że w skład tej wiązki wchodzą

A. trzy przewody trzyżyłowe o średnicy 1,5 mm2
B. dwa przewody dwużyłowe o średnicy 1,5 mm2
C. trzy przewody dwużyłowe o średnicy 1,5 mm2
D. dwa przewody trzyżyłowe o średnicy 1,5 mm2
Odpowiedź, że w wiązce przewodów 2xYDY3x1,5 mm2 znajdują się dwa przewody trzyżyłowe o średnicy 1,5 mm2, jest poprawna z kilku powodów. Oznaczenie '2x' wskazuje na to, że mamy do czynienia z dwiema wiązkami przewodów, z kolei 'YDY' to typ przewodników, który często stosuje się w instalacjach elektrycznych. Liczba '3' przed 'x' oznacza, że każdy z tych przewodów jest trzyżyłowy, co wskazuje na obecność trzech żył w każdym przewodzie, np. fazy, neutralnego i ochronnego. Przewody o średnicy 1,5 mm2 są powszechnie stosowane w instalacjach elektrycznych do zasilania urządzeń o mniejszym poborze mocy, co czyni je odpowiednimi do zastosowań domowych oraz w budownictwie. Przykładem zastosowania tych przewodów mogą być instalacje oświetleniowe lub zasilające gniazda wtykowe. Warto pamiętać, że odpowiednie oznaczenie przewodów i ich właściwe użycie jest kluczowe dla zapewnienia bezpieczeństwa i właściwej funkcjonalności instalacji elektrycznych, co jest zgodne z normami PN-IEC 60364.

Pytanie 25

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Zintegrowana głowica w.cz.
B. Powielacz wysokiego napięcia
C. Wzmacniacz mocy
D. Układ odchylania w pionie
Głowica zintegrowana w.cz. odpowiada za odbiór sygnału telewizyjnego, a jej uszkodzenie zwykle manifestuje się brakiem sygnału lub trudnościami w jego dekodowaniu, co nie prowadziłoby do iskrzenia ani zapachu ozonu. Układ odchylania pionowego ma na celu pionowe skanowanie obrazu, a uszkodzenie tego układu najczęściej skutkuje zniekształceniem obrazu lub jego całkowitym brakiem, ale nie generuje charakterystycznych symptomów związanych z wysokim napięciem. Wzmacniacz mocy odpowiada za wzmacnianie sygnału audio i wideo, a jego awaria objawia się najczęściej brakiem dźwięku lub obrazu, jednak nie wiąże się z występowaniem iskrzenia czy zapachu ozonu. Typowe błędy myślowe prowadzące do błędnych wniosków często wynikają z braku zrozumienia, jak poszczególne elementy odbiornika telewizyjnego współdziałają ze sobą. Wiedza o tym, jak funkcjonuje powielacz wysokiego napięcia oraz jego rola w systemie, jest kluczowa dla właściwej diagnostyki oraz skutecznych napraw, co podkreśla znaczenie edukacji i ciągłego doskonalenia w tej dziedzinie.

Pytanie 26

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 10 mV
B. 32 mV
C. 320 mV
D. 100 mV
Odpowiedź 10 mV jest poprawna, ponieważ rozdzielczość napięciowa przetwornika 8-bitowego można obliczyć, dzieląc zakres napięcia przez liczbę poziomów, które może wygenerować. Przetwornik 8-bitowy ma 2^8 = 256 poziomów, co oznacza, że może reprezentować 256 różnych wartości napięcia w zadanym zakresie. Zakres napięcia wynosi od 0 V do 2,56 V, co daje łączną różnicę równą 2,56 V. Dzieląc ten zakres przez 256 poziomów, otrzymujemy rozdzielczość napięciową równą 2,56 V / 256 ≈ 0,01 V, czyli 10 mV. Taka rozdzielczość jest istotna w aplikacjach wymagających precyzyjnego pomiaru, takich jak systemy pomiarowe, automatyka przemysłowa, czy urządzenia medyczne. Stosowanie przetworników o wysokiej rozdzielczości pozwala na dokładniejsze odwzorowanie sygnałów analogowych, co w praktyce przekłada się na lepszą jakość danych oraz większą efektywność procesów kontrolnych. W związku z tym, wybór odpowiedniego przetwornika, w tym jego rozdzielczości, jest kluczowym krokiem w projektowaniu systemów pomiarowych.

Pytanie 27

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. woltomierz cyfrowy
B. analyzer widma
C. miernik zniekształceń
D. oscyloskop jednokanałowy
Woltomierz cyfrowy, mimo że jest narzędziem użytecznym w pomiarach napięcia, nie jest odpowiedni do analizy międzyszczytowych wartości szumów na wyjściu wzmacniacza. Woltomierz mierzy średnią wartość napięcia AC, co nie dostarcza wystarczających informacji na temat charakterystyki sygnału szumowego. W praktyce, na przykład w aplikacjach audio, bardzo ważne jest śledzenie nie tylko wartości RMS, ale także kształtu przebiegu, co woltomierz nie jest w stanie zaoferować. Miernik zniekształceń również ma swoje ograniczenia, ponieważ jest zaprojektowany głównie do oceny jakości sygnału, a nie do bezpośredniego pomiaru szumów. Chociaż może dostarczać informacji o zniekształceniach, nie jest w stanie precyzyjnie zidentyfikować wartości szumów na wyjściu wzmacniacza. Przyrząd taki, jak analizator widma, może być przydatny do oceny szumów, jednak jego zastosowanie wymaga bardziej zaawansowanej analizy częstotliwościowej, co nie jest konieczne w przypadku prostego pomiaru międzyszczytowego. W rzeczywistości, wiele osób popełnia błąd, myląc różne funkcje przyrządów pomiarowych, co prowadzi do niewłaściwych wyników i wniosków. Aby skutecznie mierzyć szumy, niezbędne jest korzystanie z oscyloskopu, który dostarcza kompletnych informacji o zachowaniu sygnału.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. zasilanych akumulatorowo
B. izolowanych
C. odpornych na wysoką temperaturę
D. wykonanych z elastycznych tworzyw sztucznych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 32

Technologia umożliwiająca bezprzewodową komunikację na krótkim zasięgu pomiędzy różnymi urządzeniami elektronicznymi to

A. GPRS
B. FIREWIRE
C. WiMAX
D. BLUETOOTH
Bluetooth to technologia bezprzewodowa, która umożliwia komunikację na krótkie odległości pomiędzy różnymi urządzeniami elektronicznymi, takimi jak telefony, głośniki, słuchawki, a także komputery i urządzenia IoT. Działa w paśmie częstotliwości 2.4 GHz i jest skonstruowana w taki sposób, aby minimalizować zakłócenia z innych urządzeń. Standard Bluetooth został zaprojektowany z myślą o energooszczędności, co pozwala na długotrwałe użytkowanie urządzeń przenośnych. Przykłady zastosowania Bluetooth obejmują bezprzewodowe przesyłanie danych, podłączanie zestawów słuchawkowych do telefonów, a także synchronizację urządzeń, takich jak smartfony z komputerami. Warto również zaznaczyć, że Bluetooth implementuje mechanizmy zabezpieczeń, takie jak szyfrowanie, co czyni go bezpiecznym rozwiązaniem do przesyłania poufnych informacji. Standard Bluetooth przeszedł wiele ewolucji, a jego najnowsze wersje oferują większą przepustowość oraz zasięg, co czyni go jeszcze bardziej wszechstronnym rozwiązaniem w dziedzinie komunikacji bezprzewodowej.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. SATA
B. D-SUB 15
C. LPT
D. RS 232
Odpowiedź SATA jest prawidłowa, ponieważ jest to jeden z najpopularniejszych interfejsów stosowanych do podłączania dysków twardych i napędów SSD do płyt głównych komputerów. Standard SATA (Serial ATA) został wprowadzony, aby zastąpić starszy interfejs PATA (Parallel ATA) i oferuje znacznie wyższą prędkość transferu danych, co jest kluczowe w kontekście wydajności nowoczesnych systemów komputerowych. SATA obsługuje prędkości transferu do 6 Gb/s w wersji III, co pozwala na szybki dostęp do danych i efektywne wykonywanie operacji na plikach. Zastosowanie SATA umożliwia również łatwiejsze podłączanie i wymianę dysków, co jest istotne w kontekście modernizacji sprzętu. Warto również zauważyć, że złącza SATA mają charakterystyczny kształt i orientację, co ułatwia ich prawidłowe podłączenie. Przykładowo, podłączając dysk SSD do płyty głównej, użytkownik powinien zwrócić uwagę na odpowiednie złącze SATA, aby uniknąć problemów z wydajnością oraz kompatybilnością.

Pytanie 35

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. YTDY
B. YTKSy
C. RG58
D. RG59
Wybór niewłaściwego kabla do przesyłania sygnału video z kamery analogowej może prowadzić do znacznego pogorszenia jakości obrazu oraz problemów z transmisją. Kabel RG58, mimo że jest używany w aplikacjach RF, nie jest zalecany do przesyłania sygnału video, ponieważ jego wyższa tłumienność w porównaniu do RG59 skutkuje stratami sygnału, szczególnie na dłuższych dystansach. Zastosowanie RG58 w systemach CCTV może prowadzić do zniekształceń obrazu, co negatywnie wpłynie na skuteczność monitoringu. Ponadto, kable YTDY i YTKSy, które są w rzeczywistości kablami wielożyłowymi stosowanymi w instalacjach elektrycznych i komunikacyjnych, nie są przystosowane do przesyłania sygnałów video, ponieważ nie spełniają standardów impedancyjnych i mogą wprowadzać zakłócenia sygnału. Typowym błędem myślowym w tym kontekście jest mylenie zastosowań różnych typów kabli, co może prowadzić do nieefektywnych i kosztownych rozwiązań. W sytuacjach wymagających wysokiej jakości obrazu, kluczowe jest przestrzeganie specyfikacji technicznych oraz standardów branżowych, aby zapewnić niezawodność i wysoką jakość systemów monitorujących.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. pola magnetycznego
C. zmiany natężenia dźwięku
D. zmiany temperatury
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 39

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. zredukowana zostanie jego impedancja
B. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
C. nastąpi wzrost jego impedancji
D. może to prowadzić do obniżenia odporności na zakłócenia
Wybór odpowiedzi, że zmniejszenie impedancji byłoby wynikiem rozkręcenia par przewodów, jest niepoprawny, gdyż pojęcie impedancji odnosi się do oporu, który przewód stawia przepływowi prądu przemiennego. W kontekście kabli krosowych, rozkręcenie przewodów na większym odcinku wpływa na charakterystykę sygnału, ale nie w sposób, który prowadziłby do jednoznacznego zmniejszenia impedancji. Również stwierdzenie, że kabel stanie się źródłem większego pola elektromagnetycznego, jest mylące; owszem, większe pole elektromagnetyczne może wystąpić, lecz niekoniecznie w wyniku samego rozkręcenia. Całkowita emisja pola elektromagnetycznego zależy od wielu czynników, w tym od konstrukcji kabla, jego ekranowania oraz otaczających go elementów. Warto zauważyć, że zwiększone pole elektromagnetyczne nie jest bezpośrednio związane z zakłóceniami, które mogą wpływać na sygnał. Ostatecznie, stwierdzenie, że nastąpi zwiększenie impedancji, jest również nieprawdziwe, ponieważ impedancja zależy od długości kabla i jego właściwości, a nie od długości rozkręcenia pary. Dlatego tak ważne jest zwracanie uwagi na parametry techniczne instalacji i przestrzeganie standardów, aby zminimalizować ryzyko zakłóceń w systemach komunikacyjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.