Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 14 maja 2025 08:58
  • Data zakończenia: 14 maja 2025 08:59

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2427 m
B. 2742 m
C. 2472 m
D. 2724 m
Punkt na profilu podłużnym zapisany jako 2/4+27 oznacza, że znajduje się on 2427 metrów od początku trasy. Taki zapis jest standardem w dokumentacji inżynieryjnej i geodezyjnej, gdzie '2' to numer odcinka trasy, '4' to numer kilometra, a '+27' to dodatkowe metry. Zrozumienie tego formatu jest kluczowe w pracach związanych z projektowaniem infrastruktury drogowej oraz kolejowej. Na przykład, gdy inżynierowie planują prace remontowe, muszą precyzyjnie określić lokalizację, aby uniknąć błędów i zapewnić bezpieczeństwo. W praktyce, takie zapisy pomagają w identyfikacji miejsc, w których potrzebne są interwencje, a także w komunikacji między różnymi zespołami roboczymi. Dobre praktyki branżowe zalecają stosowanie jednoznacznego systemu numeracji, co ułatwia lokalizację punktów kontrolnych i zarządzanie projektem. Warto również zwrócić uwagę na znaczenie precyzyjnych zapisów w kontekście zarządzania projektem, co pozwala na dokładne planowanie zasobów i terminów realizacji zadań.

Pytanie 2

Kąt zmierzony w terenie o wartości 40°00'00'' po przeliczeniu na miarę stopniową wynosi

A. 36°00'00''
B. 40°00'00''
C. 44°00'00''
D. 30°00'00''
Odpowiedź 36°00'00'' jest poprawna, ponieważ kąt 40°00'00'' wyrażony w miarze stopniowej jest równy 36°00'00'' w miarze kątów używanej w geodezji. W geodezji i nawigacji kąt o wartości 40°00'00'' można zamienić na radiany, co można obliczyć za pomocą wzoru: kąt w radianach = kąt w stopniach * (π/180). Jednak w kontekście granic, w których wartości są przyjmowane w stopniach, kluczowe jest zrozumienie, że miara stopniowa odnosi się do systemu dziesiętnego, w którym każdy stopień dzieli się na 60 minut, a każda minuta na 60 sekund. Praktycznym przykładem zastosowania może być pomiar kątów w terenie, gdzie zastosowanie odpowiedniej konwersji kątów jest kluczowe dla dokładności i precyzji w pomiarach geodezyjnych. Używanie właściwych jednostek jest niezbędne dla zgodności z międzynarodowymi standardami, takimi jak ISO 19111 dotyczące systemów odniesienia."

Pytanie 3

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 24,3 mm
B. 18,5 mm
C. 15,8 mm
D. 23,4 mm
Błędne odpowiedzi wskazują na powszechne nieporozumienia dotyczące analizy danych pomiarowych oraz interpretacji raportów z wyrównania współrzędnych. Na przykład, podanie wartości 18,5 mm sugeruje, że pomiar został niedoszacowany, co może wynikać z pomyłki w odczycie lub z nieprawidłowego zrozumienia metodyki obliczeń. W przypadku odpowiedzi 23,4 mm oraz 15,8 mm, można zauważyć, że mogą one być wynikiem błędów w obliczeniach statystycznych, które często są stosowane do oceny precyzji pomiarów. Dobrze jest pamiętać, że błąd średni położenia to nie tylko suma błędów indywidualnych, ale również uwzględnia rozkład błędów w kontekście całego zbioru pomiarowego. Powszechnym błędem myślowym jest skupienie się na pojedynczych wartościach bez szerszej analizy raportu, co prowadzi do niesłusznych wniosków. Odpowiednia interpretacja raportów z wyrównania wymaga znajomości metod statystycznych oraz umiejętności analizy danych, co jest kluczowe w geodezji, aby zapewnić zgodność z przyjętymi standardami jakości oraz dokładności pomiarów.

Pytanie 4

Jakie jest nachylenie linii łączącej dwa punkty, które znajdują się na sąsiednich warstwicach oddalonych o 50 m, jeśli wysokość cięcia warstwicowego wynosi 0,5 m?

A. 5%
B. 10%
C. 1%
D. 0,5%
Prawidłowa odpowiedź wynika z zastosowania wzoru na obliczenie nachylenia (pochylenia) linii łączącej dwa punkty w terenie, które jest definiowane jako stosunek zmiany wysokości do poziomej odległości. W tym przypadku, mamy różnicę wysokości równą cięciu warstwicowemu, które wynosi 0,5 m, oraz poziomą odległość między punktami równą 50 m. Obliczamy pochylenie, dzieląc różnicę wysokości przez poziomą odległość, a następnie mnożąc wynik przez 100, aby otrzymać wartość procentową. Pochylenie = (0,5 m / 50 m) * 100 = 1%. Tego rodzaju obliczenia są niezbędne w inżynierii lądowej, geotechnice oraz planowaniu przestrzennym, gdzie ważne jest zrozumienie ukształtowania terenu. Używanie takich narzędzi pomagających w analizie pochylenia terenu przyczynia się do lepszego zaplanowania dróg, budynków czy innych inwestycji budowlanych, co z kolei wpływa na bezpieczeństwo i funkcjonalność tych obiektów. Standardy branżowe, takie jak normy geodezyjne, często opierają się na dokładnych obliczeniach nachyleń, co potwierdza znaczenie tej wiedzy.

Pytanie 5

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 2 punkty
B. 5 punktów
C. 4 punkty
D. 3 punkty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest na pewno ok! Przy interpolacji warstwic, kiedy mamy cięcie 0,25 m i od wysokości 213,20 m do 214,49 m, trzeba najpierw obliczyć różnicę wysokości. Wychodzi 1,29 m. Jak podzielisz to przez 0,25 m, dostaniesz prawie 5,16. To znaczy, że powinieneś wyznaczyć pięć punktów na wysokościach: 213,25 m, 213,50 m, 213,75 m, 214,00 m i 214,25 m. Ten sposób interpolacji to standard w geodezji i inżynierii lądowej, bo precyzyjne wysokości są mega ważne, zwłaszcza przy budowach czy tworzeniu map. Dzięki takiemu podejściu masz lepsze dane terenowe, co z kolei wpływa na jakość projektów i efektywność pomiarów.

Pytanie 6

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m
B. mj2
C. mj
D. m1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'mj' jest poprawna, ponieważ symbol ten odnosi się do budynków mieszkalnych jednorodzinnych, w tym do budynków parterowych oraz tych z poddaszem nieużytkowym. W polskich standardach klasyfikacji obiektów budowlanych, symbol 'mj' stosuje się do identyfikacji budynków mieszkalnych, co jest zgodne z normami przedstawionymi w rozporządzeniu o klasyfikacji obiektów budowlanych. W praktyce, oznaczenie to ułatwia lokalizację budynków na mapach oraz w dokumentacji urbanistycznej, co jest kluczowe dla planowania przestrzennego i zarządzania infrastrukturą. Dodatkowo, w kontekście projektowania urbanistycznego, zastosowanie odpowiednich symboli umożliwia lepszą analizę zagospodarowania terenu oraz wpływa na prawidłowe funkcjonowanie systemów zarządzania kryzysowego oraz dostępu do usług komunalnych. Przykładem może być analiza potrzeb infrastrukturę dla budynków oznaczonych symbolem 'mj', co wpływa na planowanie sieci wodociągowych czy kanalizacyjnych, biorąc pod uwagę specyfikę zabudowy jednorodzinnej.

Pytanie 7

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 203,36 m
B. HP = 197,96 m
C. HP = 200,26 m
D. HP = 201,06 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wysokość punktu HP, należy skorzystać z poniższej formuły: HP = Hst + i - s. Zastosowane dane to: wysokość stanowiska pomiarowego Hst = 200,66 m, wysokość instrumentu i = 1,55 m oraz odczyt kreski środkowej na łacie s = 1150 mm (czyli 1,15 m). Po podstawieniu wartości do wzoru otrzymujemy: HP = 200,66 m + 1,55 m - 1,15 m = 201,06 m. Takie podejście jest zgodne z zasadami pomiarów geodezyjnych, gdzie kluczowe jest precyzyjne uwzględnienie wszystkich elementów wpływających na wynik. Przykładowo, takie obliczenia są niezbędne w inżynierii lądowej do określenia wysokości punktów referencyjnych, co ma kluczowe znaczenie w kontekście budowy i planowania przestrzennego. Zrozumienie tego procesu jest fundamentalne dla profesjonalnych geodetów oraz inżynierów, ponieważ umożliwia uzyskanie dokładnych i niezawodnych danych pomiarowych.

Pytanie 8

Jakie są dozwolone długości rzędnych w trakcie pomiarów szczegółów sytuacyjnych I grupy?

A. 50 m
B. 75 m
C. 80 m
D. 25 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 25 m jest na pewno dobra. W geodezji i kartografii mamy określone normy, które mówią, że dla pomiarów szczegółów sytuacyjnych I grupy maksymalna długość rzędnej to właśnie 25 m. To ważne, bo dzięki temu możemy mieć większą pewność, że pomiary będą dokładne. Na przykład, gdy mierzysz granice działek czy punkty osnowy, trzymanie się tej długości pomaga uniknąć błędów, które mogą się pojawić z powodu różnych zakłóceń, takich jak drgania czy sam sprzęt. A według normy PN-EN ISO 19130, precyzyjność pomiarów jest kluczowa, więc warto się tego trzymać, żeby mieć wiarygodne dane na później.

Pytanie 9

Jakiego dokumentu wymaga geodeta, aby powiadomić ODGiK o wykonanych pracach geodezyjnych?

A. Raport techniczny
B. Wniosek o uzgodnienie dokumentacji i projektowej
C. Podanie o dostęp do danych ewidencyjnych
D. Zgłoszenie pracy geodezyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszenie pracy geodezyjnej jest kluczowym dokumentem, który geodeta musi sporządzić i złożyć w organie odpowiedzialnym za geodezję, czyli w Ośrodku Dokumentacji Geodezyjnej i Kartograficznej (ODGiK). Dokument ten informuje ODGiK o rozpoczęciu prac geodezyjnych, które mają na celu zbieranie danych dotyczących terenu, pomiarów oraz innych działań geodezyjnych. Przykładowo, gdy geodeta przystępuje do przeprowadzenia pomiarów granicznych, musi złożyć takie zgłoszenie, aby organy mogły monitorować realizację prac oraz zapewnić zgodność z obowiązującymi przepisami i standardami. W ramach praktyki, zgłoszenie to musi zawierać szczegóły dotyczące lokalizacji, rodzaju prac oraz planowanego terminu ich zakończenia. Taki proces jest zgodny z ustawą Prawo geodezyjne i kartograficzne, która nakłada obowiązek informacyjny na wykonawców takich prac. Zgłoszenie pracy geodezyjnej przyczynia się do transparentności działań geodezyjnych i umożliwia lepszą koordynację między różnymi podmiotami zaangażowanymi w proces geodezyjny.

Pytanie 10

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = +5cc
B. Vk = +6cc
C. Vk = -6cc
D. Vk = -5cc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość poprawki kątowej do jednego kąta w ciągu poligonowym zamkniętym oblicza się na podstawie ogólnej zasady, że suma kątów wewnętrznych n-kąta w postaci: (n-2) * 180°. W przypadku poligonu zamkniętego, gdzie mamy 5 kątów, oczekiwana suma kątów powinna wynosić (5-2) * 180° = 540°. Odchyłka kątowa, fα = +30cc, oznacza, że całkowita suma kątów zamyka się z błędem pomiarowym, co wpływa na konieczność wprowadzenia poprawek. Zatem, aby skorygować pomiar, stosujemy wzór na poprawkę kątową Vk = fα / n, gdzie n to liczba kątów. W tym przypadku Vk = +30cc / 5 = +6cc. Jednakże w kontekście zamkniętego poligonu, w którym zaszła odchyłka, musimy dodać dodatkową poprawkę wynikającą z błędu pomiarowego, co prowadzi do obliczenia wartości korygującej na -6cc, aby uzyskać zamknięcie poligonu. Praktyczne zastosowanie tej wiedzy ma miejsce w geodezji, gdzie dokładność pomiarów kątowych jest kluczowa przy tworzeniu map i pomiarach terenowych.

Pytanie 11

Jakim znakiem geodezyjnym powinno się zaznaczyć punkt sytuacyjnej osnowy pomiarowej na twardej nawierzchni drogi?

A. Palik drewniany
B. Bolec metalowy
C. Słupek marmurowy
D. Słupek betonowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bolec metalowy jest odpowiedni do oznaczania punktów osnowy pomiarowej na utwardzonych nawierzchniach, takich jak jezdnie, ze względu na swoje właściwości trwałości oraz odporności na uszkodzenia mechaniczne. W praktyce geodezyjnej, stosowanie bolców metalowych pozwala na precyzyjne wytyczanie punktów, które są często narażone na mechaniczne obciążenia wynikające z ruchu drogowego. Metalowy bolec można łatwo zamontować w nawierzchni, co minimalizuje konieczność ingerencji w strukturę jezdni, w przeciwieństwie do słupków betonowych czy marmurowych, które wymagają bardziej skomplikowanego przygotowania terenu. Dodatkowo, standardy pomiarowe, takie jak normy ISO dotyczące geodezji, zalecają stosowanie trwałych i łatwych do identyfikacji znaczników, co czyni bolec metalowy najlepszym wyborem. W praktyce, zastosowanie bolców metalowych zapewnia długotrwałą widoczność punktów pomiarowych, co jest kluczowe dla dokładności i wiarygodności pomiarów geodezyjnych.

Pytanie 12

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. całkowitą liczbę metrów w jednym odcinku trasy
B. całkowitą liczbę kilometrów od początku trasy
C. numer hektometra w konkretnym kilometrze
D. liczbę hektometrów w danym kilometrze trasy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że cyfra 2 w symbolu 2/5 oznacza pełną liczbę kilometrów od początku trasy, jest prawidłowa. W kontekście wytyczenia linii profilu podłużnego, ten format graficzny jest powszechnie stosowany w inżynierii lądowej i geodezji. Cyfry w takim zapisie odpowiadają segmentom trasy, przy czym licznik (2) wskazuje na liczbę pełnych kilometrów. Oznacza to, że pomiar dotyczy odległości od punktu startowego trasy, co jest kluczowe dla poprawnej interpretacji danych geodezyjnych. W praktyce, takie oznaczenia są istotne podczas dokumentacji i analizy tras transportowych, ponieważ umożliwiają precyzyjne określenie lokalizacji punktów kontrolnych, co jest zgodne z normami branżowymi, takimi jak PN-EN ISO 19101. Na przykład, w projektach budowlanych czy inżynieryjnych, znajomość i poprawne odczytywanie tych symboli jest niezbędne do planowania i koordynacji prac budowlanych, co wpływa na efektywność realizacji zadań.

Pytanie 13

Oś stanowiąca południki w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-1992 to południk

A. 21o
B. 19o
C. 17o
D. 15o

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 19o jest jak najbardziej trafna. W systemie PL-1992, który jest jednym z ważniejszych układów używanych w Polsce, południk 19o to ten, który odpowiada strefie 5 w odwzorowaniu Gaussa-Krugera. To ważne, bo dzięki temu mamy jednolite dane geograficzne na mapach. W praktyce oznacza to, że w rejonie objętym tym południkiem, współrzędne są odwzorowywane w sposób, który minimalizuje zniekształcenia. To naprawdę istotne, szczególnie w inżynierii, planowaniu przestrzennym czy geodezji. Precyzyjne pomiary są kluczowe, bo od tego zależy rozwój infrastruktury i ochrona środowiska. Zrozumienie, jak działają układy współrzędnych, takie jak PL-1992, to podstawa, jeśli chcesz skutecznie korzystać z narzędzi GIS oraz robić analizy przestrzenne. To wszystko jest bardzo istotne w nowoczesnych badaniach geograficznych.

Pytanie 14

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ks200
B. ksP200
C. ksB20
D. ks20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ks200 jest poprawna, ponieważ zgodnie z obowiązującymi normami w inżynierii lądowej i wodnej, oznaczenia dla przewodów kanalizacyjnych sanitarno-ściekowych o średnicy 20 cm wskazują na ich średnicę w milimetrach. W przypadku przewodów sanitarnych, standardowe oznaczenie składa się z prefiksu 'ks' (kanalizacja sanitarna), a następnie z liczby wskazującej średnicę w mm. Oznaczenie ks200 odnosi się więc bezpośrednio do przewodu o średnicy 200 mm, co jest zgodne z powszechnie uznawanymi praktykami w branży. W praktyce, takie oznaczenie ułatwia zarówno projektowanie, jak i realizację inwestycji budowlanych, ponieważ inżynierowie i projektanci mogą łatwo identyfikować konkretne elementy systemu kanalizacyjnego. Warto również przypomnieć, że stosowanie jednolitych oznaczeń zgodnych z normami europejskimi poprawia komunikację między różnymi uczestnikami procesu budowlanego.

Pytanie 15

Wyniki przeprowadzonego wywiadu terenowego powinny być oznaczone na kopii mapy zasadniczej przy użyciu koloru

A. grafitowym
B. czerwonym
C. czarnym
D. niebieskim

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaznaczenie wyników wywiadu terenowego na kopii mapy zasadniczej kolorem czerwonym jest zgodne z powszechnie przyjętymi standardami w dziedzinie geodezji i kartografii. Czerwony kolor jest często używany do oznaczania istotnych informacji, takich jak granice, obszary objęte analizą, a także miejsca o szczególnym znaczeniu. W praktyce, używanie czerwonego koloru pozwala na szybkie i łatwe zidentyfikowanie obszarów, które były przedmiotem badania, co jest niezbędne podczas dalszych analiz oraz planowania. Na przykład, podczas analizy wyników wywiadu terenowego dotyczącego projektów budowlanych, czerwone oznaczenie wskazuje na miejsca, które wymagają szczególnej uwagi, co może być istotne dla inżynierów i planistów. Dzięki temu, efektywnie wspiera się proces podejmowania decyzji, minimalizując ryzyko błędów w interpretacji danych. Stosowanie jednolitych kolorów w dokumentacji geodezyjnej sprzyja również lepszemu zrozumieniu i współpracy pomiędzy różnymi zespołami pracującymi nad projektem.

Pytanie 16

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 1578,00 m
B. 278,00 m
C. 578,00 m
D. 2578,00 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 17

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Otwarty
B. Zawieszonym
C. Zamkniętym
D. Obliczeniowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.

Pytanie 18

Mapy zasadniczej nie sporządza się w skali

A. 1:2000
B. 1:10000
C. 1:1000
D. 1:5000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1:10000 jest prawidłowa, ponieważ mapy zasadnicze są tworzone w skali 1:10000, co jest zgodne ze standardami określonymi w przepisach dotyczących geodezji i kartografii. Ta skala jest optymalna dla prezentacji lokalnych szczegółów w terenie, co czyni ją niezwykle przydatną w działaniach związanych z urbanistyką, planowaniem przestrzennym oraz w procesach inwestycyjnych. Właściwe odwzorowanie terenu w tej skali umożliwia dokładne pomiary i analizy, które są niezbędne w planowaniu budynków, dróg oraz infrastruktury. Mapy w tej skali są zazwyczaj wykorzystywane w projektach budowlanych, gdzie precyzyjne odwzorowanie elementów terenu, takich jak granice działek, sieci uzbrojenia terenu oraz istniejące obiekty, jest kluczowe dla skutecznego zarządzania inwestycją. Zgodność z normami, takimi jak PN-ISO 19110, podkreśla znaczenie jakości danych w procesach geoinformacyjnych, co sprawia, że skala 1:10000 jest szeroko uznawana jako standardowa w polskiej geodezji.

Pytanie 19

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:500
B. 1:250
C. 1:2000
D. 1:1000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to DAB = 33,00 m (rzeczywista długość) oraz dAB = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako DAB / dAB, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 20

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 – α + 200g
B. Az2-3 = Az2-1 + α - 200g
C. Az2-3 = Az1-2 – α + 200g
D. Az2-3 = Az1-2 + α - 200g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 21

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 215,00 m
B. 217,00 m
C. 211,00 m
D. 213,00 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór 211,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu jest właściwą decyzją, gdyż jest to wartość, która pozwala na uzyskanie stabilnej bazy odniesienia dla analizy wysokości punktów. W pomiarach niwelacyjnych, istotne jest, aby wybrać poziom, który odzwierciedla najniższy z punktów w badanym obszarze. W tym przypadku, 211,00 m jest wartością poniżej wszystkich zarejestrowanych wysokości punktów, co umożliwia łatwe odczytywanie różnic wysokości. Przykładowo, jeśli będziemy porównywać wysokości punktów 1-6 w kontekście ich lokalizacji na profilu, odniesienie do 211,00 m będzie sprzyjać większej przejrzystości analiz i wizualizacji. W praktyce, wybór takiego poziomu porównawczego jest zgodny z zasadą, że wszelkie wymiary i różnice powinny być przedstawiane względem wspólnej, stabilnej bazy, co jest kluczowe w inżynierii lądowej i geodezji. Dodatkowo, zapewnia to zgodność z normami branżowymi dotyczącymi precyzyjnych pomiarów i analiz terenowych, co wpływa na efektywność dalszych prac projektowych.

Pytanie 22

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 30 m
B. 25 m
C. 20 m
D. 15 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dopuszczalna długość rzędnej wynosząca 25 m w pomiarach sytuacyjnych konturów budynków przy zastosowaniu metody domiarów prostokątnych jest zgodna z zaleceniami norm i standardów pomiarowych. Taka długość pozwala na efektywne wykonywanie pomiarów, minimalizując jednocześnie błędy związane z nieprawidłowym przenoszeniem wymiarów. Przykładowo, przy pomiarach na większych dystansach, błędy kumulacyjne mogą znacząco wpłynąć na dokładność wyników. Dlatego stosowanie rzędnych o długości 25 m jest praktycznym rozwiązaniem, które zapewnia równocześnie wysoką precyzję i efektywność pracy. W praktyce, taki wymiar pozwala na zastosowanie odpowiednich narzędzi pomiarowych, takich jak dalmierze optyczne, które są zoptymalizowane do pracy w takich odległościach. Dobrą praktyką jest także regularne kalibrowanie sprzętu, co dodatkowo zwiększa dokładność pomiarów. W kontekście przepisów budowlanych oraz norm geodezyjnych, długość rzędnej powinna być dostosowana do specyfiki terenu oraz rodzaju budowli, co czyni znajomość tego zagadnienia niezwykle istotnym elementem pracy geodety.

Pytanie 23

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. -0,670 cm
B. 0,670 m
C. -0,670 m
D. 6,700 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -0,670 m jest prawidłowa, ponieważ różnica wysokości między punktami niwelacyjnymi oblicza się jako różnicę odczytów poziomych na łatach. W tym przypadku, aby obliczyć różnicę wysokości Δh100-101, należy wykorzystać wzór Δh = l101 - l100. Podstawiając wartości: Δh = 2 225 - 1 555 = 670. Ponieważ punkt 101 jest wyżej od punktu 100, różnica wysokości powinna być ujemna, co daje -0,670 m. W praktyce proces ten jest kluczowy w geodezji, szczególnie w kontekście budowy, gdzie precyzyjne pomiary różnic wysokości są niezbędne do zapewnienia odpowiednich spadków i poziomów fundamentów. W branży stosuje się różne techniki pomiarowe, takie jak niwelacja, które pozwalają na dokładne określenie różnic wysokości między punktami. Dodatkowo, standardy geodezyjne, takie jak normy ISO i PN-EN, podkreślają znaczenie dokładności w pomiarach wysokościowych, co jest kluczowe dla bezpieczeństwa konstrukcji.

Pytanie 24

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. katastralnych
B. do celów projektowych
C. uzupełniających
D. do celów prawnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "do celów prawnych" jest poprawna, ponieważ mapy te mają kluczowe znaczenie w regulacji stanu prawnego nieruchomości. Służą one do przedstawiania granic działek, ich powierzchni oraz wszelkich obciążeń prawnych, takich jak hipoteki czy służebności. Mapy do celów prawnych są wykorzystywane w procesach notarialnych, a także w postępowaniach sądowych, gdzie ważne jest dokładne określenie stanu prawnego nieruchomości. Przykładem zastosowania takich map może być procedura podziału działki, gdzie precyzyjne ustalenie granic jest niezbędne do prawidłowego podziału. W praktyce wykorzystuje się je w dokumentacji związanej z obrotem nieruchomościami, co jest zgodne z normami i standardami, takimi jak Ustawa o geodezji i kartografii, która reguluje kwestie związane z tworzeniem i wykorzystywaniem map w obrocie nieruchomościami.

Pytanie 25

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 0,4 cm2
B. 400,0 cm2
C. 4,0 cm2
D. 40,0 cm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 26

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 21°
B. 19°
C. 20°
D. 22°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 27

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. hydrostatycznej
B. trygonometrycznej
C. punktów rozproszonych
D. siatkowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 28

Metodę niwelacji, która polega na ustalaniu różnic wysokości pomiędzy punktami w terenie na podstawie zmierzonych kątów pionowych oraz poziomych odległości między tymi punktami, określamy jako metodę niwelacji

A. siatki kwadratów
B. trygonometrycznej
C. punktów rozproszonych
D. geometrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda niwelacji trygonometrycznej to naprawdę fajna technika w geodezji. Pozwala na pomiar różnic wysokości między punktami, używając kątów pionowych i odległości poziomych. Można sobie to wyobrazić tak, że geodeta staje z teodolitem w jednym punkcie, mierzy kąt do punktu, którego wysokość chcemy znać, a potem sprawdza, jak daleko jest do niego w poziomie. Dzięki tym pomiarom, korzystając z trygonometrii, można obliczyć wysokości, co jest super praktyczne, zwłaszcza w terenie, gdzie czasem ciężko do punktów dotrzeć. Ten sposób jest często wykorzystywany w budownictwie czy przy robieniu map. W sytuacjach, gdy musimy uzyskać precyzyjne pomiary na długich dystansach lub w trudnym terenie, niwelacja trygonometryczna jest po prostu nieoceniona. Ważne też, żeby pamiętać, że przestrzeganie norm geodezyjnych, jak PN-EN ISO 17123-3, daje pewność, że pomiary są dokładne.

Pytanie 29

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna sieci uzbrojenia terenu
B. ewidencja geodezyjna systemu urządzeń technicznych
C. geodezyjna ewidencja sieci uzbrojenia terenu
D. ewidencja geometryczna systemu uzbrojenia terenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 30

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. szczegółowych osnów geodezyjnych
B. ewidencji gruntów i budynków
C. geodezyjnej ewidencji sieci uzbrojenia terenu
D. obiektów topograficznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.

Pytanie 31

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 2,5 cm
B. 50 cm
C. 25 cm
D. 5 cm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 32

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. grupy
B. rodzaje
C. klasy
D. kategorie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 33

Który z obiektów należy do I grupy dokładnościowej detali terenowych?

A. Rura wodociągowa
B. Słup telekomunikacyjny
C. Plac sportowy
D. Skarpa bez umocnień

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Słup telekomunikacyjny to zdecydowanie obiekt, który trafia do I grupy dokładnościowej, bo ma konkretną, stałą lokalizację. W geodezji jest to super ważne, bo te słupy wykorzystywane są jako punkty odniesienia przy pomiarach. Dzięki nim łatwiej tworzy się mapy i plany. Z praktyki wiem, że często są one wykorzystywane w inwentaryzacji, co pokazuje, jak wielką rolę odgrywają w tworzeniu infrastruktury. Jak wiadomo, musimy mieć pewność co do ich pozycji, a technologia GNSS jest tu nieoceniona, bo daje naprawdę wysoką dokładność. Oprócz tego, te słupy mają spore znaczenie w analizie przestrzennej i planowaniu urbanistycznym. Ich lokalizacja może mocno wpływać na to, jak działają usługi telekomunikacyjne w danym rejonie.

Pytanie 34

Oblicz kątową korekcję dla jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg składa się z 5 kątów, a odchyłka kątowa wynosi fα = +30cc

A. Vkt = -6cc
B. Vkt = +6cc
C. Vkt = -5cc
D. Vkt = +5cc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawka kątowa do kąta w ciągu poligonowym zamkniętym jest obliczana na podstawie ogólnej zasady, że suma wszystkich kątów wewnętrznych powinna wynosić (n-2) * 180°, gdzie n to liczba wierzchołków. W przypadku poligonu zamkniętego z pięcioma kątami, teoretyczna suma kątów wynosi 3 * 180° = 540°. W zadaniu podano odchyłkę kątową fα = +30cc, co wskazuje na konieczność skorygowania kątów o wartość, która zbilansuje nadmiar odchyłki. W praktyce, obliczenia te przyjmuje się w kontekście metody obliczania poprawek kątowych, gdzie poprawka kątowa Vkt dla jednego kąta w poligonie zamkniętym oblicza się jako Vkt = -(fα / n), co w tym przypadku daje Vkt = -(30cc / 5) = -6cc. Tego rodzaju obliczenia są kluczowe w geodezji i inżynierii, gdzie precyzyjne pomiary kątów mają istotne znaczenie dla dokładności projektów budowlanych oraz w nawigacji. Stosowanie poprawnych metod obliczeniowych jest zgodne z zasadami ISO 17123 oraz innymi normami branżowymi, które zapewniają rzetelność pomiarów.

Pytanie 35

Wizury pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej powinny być przeprowadzone w trakcie

A. sporządzania opisu topograficznego
B. wywiadu terenowego
C. pomiarów rzeźby terenu
D. niwelacji punktów osnowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wywiad terenowy jest kluczowym elementem w procesie geodezyjnego pomiaru, gdyż umożliwia dokładne sprawdzenie wizur pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej. W trakcie wywiadu terenowego geodeta zbiera informacje o warunkach terenowych, które mogą wpłynąć na pomiary. Przykładem może być ocena przeszkód, takich jak budynki czy drzewa, które mogą zasłaniać widok pomiędzy punktami pomiarowymi. Wysokiej jakości wizury są istotne, gdyż pozwalają na minimalizowanie błędów w pomiarach, co jest zgodne z normami geodezyjnymi, takimi jak PN-EN ISO 17123, które określają metody pomiarów geodezyjnych. Dobre praktyki w tej dziedzinie zakładają systematyczne sprawdzanie i weryfikację wizur w różnych warunkach, co przyczynia się do zwiększenia precyzji i rzetelności uzyskiwanych danych. W przypadku pomiarów osnowy poziomej, wywiad terenowy powinien być integralną częścią planowania pomiarów, co umożliwia lepsze zarządzanie ryzykiem i dostosowanie metod pracy do specyfiki terenu.

Pytanie 36

Zastosowanie metody niwelacji służy do pomiaru oraz zagęszczenia osnowy wysokościowej?

A. barometrycznej
B. reperów
C. profilów
D. powierzchniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "reperów" jest prawidłowa, ponieważ pomiar i zagęszczenie osnowy wysokościowej przy użyciu metody niwelacji opiera się na wykorzystaniu reperów, które są stałymi punktami odniesienia. Repery to trwałe punkty, na których można precyzyjnie mierzyć wysokości. W procesie niwelacji, sprzęt pomiarowy, jak np. niwelator optyczny, jest ustawiany na statywie w punkcie pomiarowym, a następnie odczyty wysokości są wykonywane w stosunku do reperów. Przykładem zastosowania tej metody są prace geodezyjne, gdzie precyzyjne określenie wysokości terenowych jest kluczowe, na przykład w budownictwie lub inżynierii lądowej. Kiedy ustalamy osnowę wysokościową, stosowanie reperów jako punktów odniesienia zapewnia wysoką dokładność pomiarów. Zgodnie z normami geodezyjnymi, np. PN-EN ISO 17123, metody niwelacji powinny być realizowane zgodnie z ustalonymi procedurami, aby zapewnić wiarygodność wyników.

Pytanie 37

Na podstawie tabeli określ dopuszczalną długość domiaru prostokątnego do budynku przy pomiarze sytuacyjnym metodą ortogonalną.

Grupa
szczegółów terenowych
Dopuszczalna
długość rzędnej
Dopuszczalny błąd pomiaru
długości rzędnej i odciętej
I25 m0,05 m
II50 m0,05 m
III70 m0,10 m

A. 0,10 m
B. 50 m
C. 0,05 m
D. 25 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 25 m, ponieważ zgodnie z tabelą dopuszczalnych długości rzędnej dla różnych grup szczegółów terenowych, grupa I posiada maksymalną długość domiaru prostokątnego do budynku wynoszącą 25 m. W kontekście pomiaru sytuacyjnego metodą ortogonalną, długość ta ma kluczowe znaczenie dla precyzyjności oraz dokładności wykonania pomiarów. Ustalanie odpowiednich długości domiaru jest fundamentalnym elementem w pracach geodezyjnych, ponieważ bezpośrednio wpływa na jakość i wiarygodność danych pomiarowych. W praktyce, stosowanie tej długości pozwala na skuteczne odwzorowanie elementów terenowych oraz minimalizuje błędy wynikające z nieprawidłowych odległości. Należy pamiętać, że w geodezji istnieją określone standardy, które regulują wymagania dotyczące pomiarów sytuacyjnych, a ich przestrzeganie ma na celu zapewnienie zgodności z obowiązującymi normami oraz najlepszymi praktykami w branży.

Pytanie 38

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości pionowej i kąta poziomego
B. odległości poziomej i kąta poziomego
C. odległości poziomej i kąta pionowego
D. odległości pionowej i kąta pionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 39

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. +5,6 mm
B. -56 mm
C. -5,6 mm
D. +56 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -5,6 mm jest rzeczywiście trafna, bo dokładnie pokazuje, że punkt nr 3 przesunął się w dół o 5,6 mm. To dość istotne w geodezji i inżynierii, bo takie pomiary mówią nam, czy konstrukcje są stabilne i czy coś się zmienia w terenie. Żeby obliczyć to przemieszczenie, porównujemy pomiary z początku i po zmianach. W tym wypadku, pierwotna wartość punktu nr 3 została zmniejszona o 5,6 mm. To przydaje się w praktyce, na przykład przy analizie osiadań budynków, bo musimy wiedzieć, czy się nie zapadają. W branży używa się różnych metod, jak tachimetria czy GNSS, żeby mieć pewność co do dokładności danych o przemieszczeniach. Przepisy, takie jak Eurokod 7, wymagają regularnego sprawdzania tych wartości, by zapewnić bezpieczeństwo naszych budowli.

Pytanie 40

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Kiedy zostaną zniszczone
B. Kiedy nie były używane przez pięć lat
C. Kiedy stracą wartość użytkową
D. Po upływie dwóch lat od dodania do zasobu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Materiały z państwowego zasobu geodezyjnego i kartograficznego podlegają wyłączeniu z tego zasobu w momencie, gdy utracą swoją przydatność użytkową. Przydatność użytkowa materiałów geodezyjnych i kartograficznych oznacza ich zdolność do spełniania wymagań użytkowników, w tym instytucji, które się nimi posługują. Przykładem może być aktualizacja map topograficznych, które muszą odzwierciedlać rzeczywisty stan terenu, aby były użyteczne dla planowania przestrzennego czy działań związanych z ochroną środowiska. Gdy materiały przestają odpowiadać rzeczywistemu stanowi, ich wartość w kontekście zastosowań praktycznych spada, co może prowadzić do decyzji o ich wyłączeniu z zasobu. W kontekście dobrych praktyk w zarządzaniu informacjami geodezyjnymi, regularna weryfikacja i aktualizacja zasobów jest kluczowa dla zapewnienia ich aktualności oraz zgodności z obowiązującymi normami, co przyczynia się do poprawy efektywności działań w zakresie planowania i zarządzania przestrzenią.