Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 8 maja 2025 11:59
  • Data zakończenia: 8 maja 2025 12:40

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 27,745 g
B. 22,740 g
C. 22,745 g
D. 27,740 g
Jak się pomylisz, to warto zwrócić uwagę na typowe błędy przy obliczaniu masy. Na przykład odpowiedzi 22,745 g i 22,740 g mogą wskazywać na błędy przy sumowaniu masy odważników albo problem z przeliczaniem jednostek. Często niektórzy zapominają, żeby uwzględnić wszystkie jednostki, co potem prowadzi do tego, że masa wyjdzie za mała. Przykładowo, jak 500 mg to 0,5 g, to trzeba to doliczyć do całości. Zrozumienie, jak przeliczać jednostki, jest naprawdę ważne w laboratoriach. Inny częsty błąd to pominięcie sumy odważników, przez co wynik jest niższy niż powinien być. W praktyce widzę, że każdy detal ma znaczenie, a jak popełnisz błąd w jednym kroku, to cały proces może się skomplikować. Dokładność i staranność to kluczowe sprawy, bo ich brak może prowadzić do złych wyników w badaniach czy kontrolach jakości w przemyśle.

Pytanie 2

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
B. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Na ilustracji oznaczono numery 1 i 4:

A. 1 - ekstraktor, 4 - chłodnicę zwrotną
B. 1 - kolbę destylacyjną, 4 - ekstraktor
C. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
D. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 5

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Kolejność ważenia reagentów
B. Precyzja obliczeń wydajności
C. Tempo sączenia
D. Wpływ przemycia osadu
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 6

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Krystalizacja
B. Sublimacja
C. Chromatografia
D. Destylacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. wyprażyć
B. przemyć
C. wysuszyć
D. zważyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 11

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu fosforowego(V).
B. kwasu azotowego(V).
C. kwasu solnego.
D. kwasu siarkowego(VI).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 12

Jakie jest przeznaczenie pieca muflowego?

A. przygotowania próbek do postaci jonowej
B. rozkładu próbek na sucho
C. koncentracji próbek
D. separacji próbek
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 13

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. stałe, palne
B. bardzo toksyczne, niepalne
C. stałe, niepalne
D. toksyczne, palne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 14

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 0,25 g
B. 25 g
C. 2,5 g
D. 250 g
Wybierając inne odpowiedzi, można wprowadzić się w błąd co do metody obliczeń związanych z roztworami. Przykładowo, odpowiedź 250 g może sugerować, że cała masa roztworu to tylko NaCl, co jest nieprawidłowe, ponieważ roztwór składa się z substancji rozpuszczonej oraz rozpuszczalnika. Innym błędem jest wybór 0,25 g, co może wynikać z błędnego rozumienia skali stężenia; 10% roztwór oznacza, że na każdy 100 g roztworu przypada 10 g NaCl, a nie 0,25 g. Podobnie, odpowiedź 2,5 g jest zbyt mała w kontekście obliczeń, co może wskazywać na mylne przeliczenie lub pominięcie kluczowego etapu w obliczeniach. Kluczowym błędem myślowym jest nieuznanie, że stężenie procentowe odnosi się do całkowitej masy roztworu, a nie tylko substancji rozpuszczonej. W praktyce, aby poprawnie wykonać obliczenia dotyczące roztworów chemicznych, istotne jest zrozumienie, jak różne składniki wpływają na całkowitą masę i jak to się przekłada na masę substancji aktywnej. Wiedza ta ma zastosowanie nie tylko w chemii, ale także w biologii i farmacji, gdzie przygotowanie roztworów jest na porządku dziennym.

Pytanie 15

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 25 cm3
C. 50 cm3
D. 10 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 16

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
C. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 17

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
B. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
C. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
D. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
Odpowiedź, że można przygotować 500 cm3 roztworu o stężeniu 0,2000 mol/dm3, jest prawidłowa, ponieważ można to uzasadnić z definicji stężenia molowego oraz objętości roztworu. Fabrycznie przygotowana odważka analityczna zawiera 0,1 mola EDTA. Aby obliczyć, ile roztworu można przygotować o określonym stężeniu, należy zastosować wzór: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość w dm3. W przypadku stężenia 0,2000 mol/dm3, mamy: 0,1 mola = 0,2000 mol/dm3 * V. Po przekształceniu równania do postaci V = n/C otrzymujemy V = 0,1 mol / 0,2000 mol/dm3 = 0,5 dm3, co odpowiada 500 cm3. Przygotowując roztwór o tym stężeniu, możemy wykorzystać EDTA w titracji kompleksometrycznej, co jest standardową metodą analizy chemicznej, szczególnie w badaniach jakości wody i analizie metali. Takie podejście zapewnia dokładność i zgodność z normami analitycznymi, co jest kluczowe w laboratoriach chemicznych.

Pytanie 18

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. oczyszczania
B. rozcieńczania
C. utrwalania
D. mianowania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. ściśle 0,2 mol/dm3
B. 0,100 mol/dm3
C. 0,200 mol/dm3
D. około 0,2 mol/dm3
Odpowiedź 'około 0,2 mol/dm3' jest prawidłowa, ponieważ nie spełnia kryteriów roztworu mianowanego. Roztwory mianowane charakteryzują się ściśle zdefiniowanym stężeniem, co oznacza, że ich stężenie powinno być określone z maksymalną precyzją. Roztwór mianowany NaOH o stężeniu dokładnie 0,200 mol/dm3 czy ściśle 0,2 mol/dm3 to przykłady roztworów, które są dokładnie przygotowane i spełniają standardy laboratoryjne. Roztwory te są kluczowe w analizach chemicznych, gdzie precyzyjne pomiary stężenia są niezbędne do uzyskania wiarygodnych wyników. W praktyce, na przykład w titracji, gdzie oblicza się ilość substancji reagującej, zastosowanie roztworu mianowanego pozwala na dokładne obliczenie stężenia substancji analizowanej, co jest podstawą wielu procedur analitycznych. Warto zatem zwracać uwagę na precyzję w przygotowywaniu roztworów, aby zapewnić ich wiarygodność i powtarzalność wyników.

Pytanie 21

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 13 g
C. 130 mg
D. 1300 mg
Odpowiedź 0,013 g jest prawidłowa, ponieważ waga laboratoryjna o dokładności odczytu 10 mg (0,01 g) nie pozwala na precyzyjne ważenie mas mniejszych niż ta wartość. Przygotowanie odważki o masie 0,013 g wymagałoby pomiaru, który jest poniżej granicy dokładności wagi, skutkując niedokładnym odczytem. W praktyce laboratoria powinny stosować wagi, które są w stanie dokładnie mierzyć masy w zakresie ich potrzeb, a zgodność z normami dotyczącymi dokładności pomiarów jest kluczowa. Przykładowo, w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników, zawsze używa się wag, które sprostają wymaganiom analitycznym. Ważenie substancji o masach mniejszych niż 10 mg przy użyciu wagi, która ma taką granicę dokładności, prowadziłoby do błędów systematycznych, co mogłoby mieć wpływ na dalsze etapy analizy.

Pytanie 22

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.ch.
B. cz.
C. cz.d.a.
D. techn.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 23

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Pobranie losowego fragmentu bez rozdrabniania
B. Suszenie gleby przed pobraniem próbki bez mieszania
C. Przesianie gleby przez sitko o dużych oczkach bez mieszania
D. Dokładne wymieszanie i rozdrobnienie całej próbki
Homogenizacja próbki gleby to kluczowy etap przygotowania materiału do analiz chemicznych, bo tylko wtedy wyniki są powtarzalne i wiarygodne. Dokładne wymieszanie i rozdrobnienie całej próbki pozwala uzyskać reprezentatywną mieszaninę – każda pobrana część ma w przybliżeniu taki sam skład jak całość. W praktyce w laboratoriach stosuje się najpierw suszenie gleby, potem rozdrabnianie w moździerzu lub młynku, a następnie dokładne mieszanie, czasem dodatkowo przesiewanie przez drobne sito (np. 2 mm), żeby usunąć kamienie i korzenie. Bez tego etapu nie ma sensu przeprowadzać analiz, bo próbka może być niejednorodna i nie oddawać faktycznego składu gruntu. To podstawa w każdej procedurze dotyczącej badań środowiskowych, rolniczych czy przemysłowych. Moim zdaniem, jeśli ktoś pominie ten krok, to nawet najlepszy sprzęt i odczynniki nic nie dadzą – można otrzymać wyniki całkowicie przypadkowe. Dobre praktyki laboratoryjne (GLP) wręcz wymagają standaryzacji homogenizacji, bo to wpływa na jakość i porównywalność danych. Warto pamiętać, że nawet w terenie, tuż po pobraniu próbki, zaleca się wstępne wymieszanie, a dopiero potem dalsze przygotowanie w laboratorium.

Pytanie 24

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Liofilizację.
B. Utrwalanie.
C. Wstępne suszenie.
D. Oznaczanie wilgoci.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 25

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 8,0 g
B. 1,6 g
C. 9,6 g
D. 16,0 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. piasku oraz ściernych detergentów
B. mydlanego roztworu
C. stężonego kwasu siarkowego(VI) technicznego
D. alkoholowego roztworu NaOH
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 3,5 g KOH
B. 35,0 g KOH
C. 0,35 g KOH
D. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 31

50 cm3 alkoholu etylowego zmieszano w kolbie miarowej z 50 cm3 wody. W wyniku zjawiska kontrakcji objętość otrzymanego roztworu wyniosła 97,5 cm3. Ile wynosi stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu i stężenie procentowe roztworu alkoholu (v/v) po uzupełnieniu kolby wodą do 100 cm3?

Stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniuStężenie procentowe (v/v) roztworu alkoholu po uzupełnieniu kolby wodą do 100 cm3
A.49,2%48,0%
B.50,0%49,7%
C.51,3%,50,0%
D.53,3%50,2%

A. A.
B. B.
C. D.
D. C.
Odpowiedź C jest poprawna, ponieważ stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu wynosi około 51,3%. Obliczamy to, dzieląc objętość alkoholu (50 cm³) przez objętość roztworu po zmieszaniu (97,5 cm³) i mnożąc przez 100%, co daje: (50 cm³ / 97,5 cm³) * 100% ≈ 51,3%. Następnie, gdy uzupełnimy kolbę wodą do 100 cm³, całkowita objętość roztworu będzie wynosić 100 cm³, a objętość alkoholu pozostanie taka sama (50 cm³), co prowadzi do stężenia: (50 cm³ / 100 cm³) * 100% = 50%. Rozumienie tych obliczeń jest kluczowe w chemii, zwłaszcza w kontekście przygotowywania roztworów, gdzie precyzyjne stężenia są istotne w laboratoriach analitycznych, farmaceutycznych oraz w przemyśle chemicznym. Przykładem zastosowania tej wiedzy jest przygotowanie roztworów do badań laboratoryjnych, gdzie dokładność i powtarzalność stężeń mają kluczowe znaczenie dla uzyskania wiarygodnych wyników.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 6,30 mol/dm3
B. 5,30 mol/dm3
C. 3,49 mol/dm3
D. 3,60 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 35

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. Azotu azotanowego(V).
B. Fosforanów ogólnych.
C. BZT.
D. Barwy.
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 36

W urządzeniu Soxhleta wykonuje się

A. dekantację
B. krystalizację
C. ługowanie
D. sublimację
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 37

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 13
B. 1
C. 11
D. 3
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Zestaw do filtracji nie zawiera

A. szklanej bagietki
B. szklanego lejka
C. metalowego statywu
D. kolby miarowej
Kolba miarowa nie jest elementem zestawu do sączenia, ponieważ jej główną funkcją jest dokładne pomiarowanie objętości cieczy. W procesach sączenia, szczególnie w laboratoriach chemicznych i biologicznych, kluczowe jest oddzielenie fazy stałej od cieczy, co odbywa się najczęściej z wykorzystaniem lejek szklany, który jest niezbędny do precyzyjnego kierowania cieczy do naczynia zbiorczego. Bagietka szklana służy do przenoszenia lub dozowania niewielkich ilości substancji, a statyw metalowy jest używany do stabilizacji elementów podczas eksperymentów. W kontekście dobrych praktyk laboratoryjnych, ważne jest zrozumienie roli każdego z tych narzędzi, aby efektywnie przeprowadzać procedury analityczne, takie jak filtracja, gdzie kluczowe jest użycie lejka i odpowiednich filtrów, a kolba miarowa nie jest konieczna w tym procesie. Zrozumienie tych różnic pozwala na lepsze planowanie i przeprowadzanie działań laboratoryjnych, co jest niezbędne w pracy każdego chemika.

Pytanie 40

Aby przeprowadzić syntezę substancji organicznej w temperaturze 150°C, należy zastosować łaźnię

A. olejową
B. powietrzną
C. parową
D. wodną
Wybór łaźni powietrznej, parowej lub wodnej do syntezy organicznej w temperaturze 150°C jest niezbyt dobrym pomysłem. Łaźnie powietrzne, mimo że można ich używać w niższych temperaturach, nie są w stanie zapewnić odpowiedniej stabilności oraz precyzji, co może sprawić, że reakcje będą nieregularne. W sytuacji wysokotemperaturowych syntez, to nie wystarczy, bo powietrze ma niskie ciepło właściwe i słabo przewodzi ciepło. Łaźnie parowe są skuteczne tylko do około 100°C, a przy wyższych temperaturach mogą wystąpić kłopoty z wrzeniem i stratą cieczy, co w wielu reakcjach może być kłopotliwe. Z kolei łaźnie wodne mają swoją granicę, bo nie mogą obsłużyć 150°C ze względu na temperaturę wrzenia. Używanie wody w takich warunkach naraża nas na ryzyko kondensacji pary, co może zanieczyścić nasz produkt. W praktyce w laboratoriach starają się wybierać takie medium grzewcze, które będzie miało odpowiednie parametry temperaturowe i gwarantowało stabilność oraz czystość reakcji. Dlatego, do syntez organicznych w wysokich temperaturach, łaźnia olejowa to zdecydowanie najlepszy wybór, a inne metody są tu nieodpowiednie.