Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 11:47
  • Data zakończenia: 25 maja 2025 12:08

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach i okularach ochronnych
B. kasku ochronnym i rękawicach elektroizolacyjnych
C. obuwiu z gumową podeszwą oraz fartuchu ochronnym
D. rękawicach skórzanych i fartuchu skórzanym
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. termoaktywną
B. roboczą standardową
C. roboczą trudnopalną
D. bawełnianą w formie kombinezonu
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. widoczności.
B. pomieszczeniu, gdzie znajduje się stanowisko pracy.
C. zasięgu ręki.
D. zapleczu zakładu pracy.
Umieszczanie narzędzi w zasięgu wzroku może wydawać się ok, ale w rzeczywistości to nie wystarcza. Owszem, widzisz narzędzia, ale jeśli są daleko, musisz się przemieszczać, co zwiększa ryzyko kontuzji. Pracownicy często narzekają na ból związany z takim układem. A jak narzędzia są w magazynie, to trzeba tracić czas na ich szukanie, co jest nieefektywne. Czasem pomieszczenia nie są przystosowane do pracy, więc to nie jest idealne rozwiązanie. Współczesna ergonomia zaleca, żeby dobrze rozplanować stanowisko pracy i dostosować je do zadań, co jest zgodne z podejściem lean management i metodyką 5S, które mówią o porządku i ograniczaniu zbędnych ruchów.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Silniki, które mają największy moment rozruchowy to

A. szeregowe prądu stałego
B. asynchroniczne prądu przemiennego
C. bocznikowe prądu stałego
D. synchroniczne prądu przemiennego
Silniki elektryczne różnią się między sobą konstrukcją i zasadą działania, co ma bezpośredni wpływ na ich charakterystyki, w tym moment obrotowy. Synchroniczne silniki prądu przemiennego, mimo że mają swoje zastosowania w przemyśle, nie są optymalne tam, gdzie wymagana jest wysoka wartość momentu rozruchowego. Ich działanie opiera się na synchronizacji wirnika z polem magnetycznym, co może prowadzić do problemów z rozruchem przy dużych obciążeniach. Z drugiej strony, silniki bocznikowe prądu stałego również nie osiągają tak dużego momentu rozruchowego jak silniki szeregowe, gdyż ich uzwojenie wzbudzenia jest podłączone równolegle do wirnika, co skutkuje mniejszym prądem wzbudzenia w momentach startowych. Asynchroniczne silniki prądu przemiennego, znane ze swojej prostoty i niezawodności, także nie potrafią generować momentu rozruchowego porównywalnego z silnikami szeregowymi. Ich charakterystyka rozruchowa jest opóźniona z powodu braku prądu wzbudzenia w stanie spoczynku. Zrozumienie tych różnic jest kluczowe w inżynierii, ponieważ dobór odpowiedniego silnika do konkretnych zastosowań może zadecydować o efektywności i wydajności systemu. Z tego powodu, w obszarach, gdzie wysoka siła rozruchowa jest niezbędna, zaleca się stosowanie silników szeregowych prądu stałego jako najbardziej odpowiedniego rozwiązania.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. dermatologicznych
B. układu pokarmowego
C. układu sercowego
D. układu słuchu
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe wspomaganie wytwarzania
B. Komputerowa kontrola jakości
C. Komputerowe wspomaganie projektowania
D. Komputerowe przygotowanie produkcji
Skrót CAM oznacza 'Computer-Aided Manufacturing', co w języku polskim tłumaczy się jako 'Komputerowe wspomaganie wytwarzania'. Jest to technologia, która wykorzystuje oprogramowanie i systemy komputerowe do wsparcia procesów produkcyjnych. CAM pozwala na automatyzację procesów wytwarzania, co prowadzi do zwiększenia efektywności i precyzji produkcji. Przykładem zastosowania CAM jest programowanie maszyn CNC (Computer Numerical Control), które wykorzystują dane generowane przez oprogramowanie do precyzyjnego wykonywania operacji mechanicznych. Dzięki zastosowaniu CAM przedsiębiorstwa mogą optymalizować swoje procesy, redukując czas cyklu produkcyjnego oraz minimalizując błędy ludzkie. W branży produkcyjnej, standardy takie jak ISO 9001 podkreślają znaczenie jakości i efektywności, co w połączeniu z technologią CAM przyczynia się do wytwarzania wyrobów o wysokiej jakości. Zastosowanie CAM jest szczególnie istotne w przemyśle, gdzie precyzja i efektywność są kluczowe, na przykład w produkcji części do pojazdów czy elektroniki.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Gaussotron.
B. Tensometr.
C. Warystor.
D. Termistor.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 25

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
B. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
C. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
D. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 26

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 0,75 A
B. 3 A
C. 10 A
D. 2,5 A
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 27

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Pirometr
B. Dynamometr
C. Wakuometr
D. Wariometr
Wakuometr to urządzenie pomiarowe, które służy do pomiaru podciśnienia, czyli ciśnienia mniejszego niż ciśnienie atmosferyczne. Wakuometry są kluczowe w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy spożywczy, gdzie kontrola ciśnienia odgrywa fundamentalną rolę w procesach technologicznych. Na przykład, w systemach próżniowych stosowanych do pakowania żywności, wakuometry pomagają monitorować poziom podciśnienia, co jest niezbędne dla zapewnienia odpowiedniej jakości i trwałości produktów. W kontekście medycyny, wakuometr może być używany do pomiaru ciśnienia w systemach laboratoryjnych, gdzie precyzyjna kontrola ciśnienia jest niezbędna do uzyskania wiarygodnych wyników. Praktyczna znajomość wakuometrów i ich zasad działania jest również istotna w kontekście bezpieczeństwa, ponieważ niewłaściwe pomiary podciśnienia mogą prowadzić do poważnych awarii technicznych. Zgodność z normami takimi jak ISO 9001, które podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych, jest kluczowa dla zapewnienia wysokiej jakości i niezawodności urządzeń pomiarowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. pojawu przerwy w obwodzie elektrycznym
B. wystąpienia zwarcia doziemnego
C. dotknięcia odizolowanych części będących pod napięciem
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 31

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. wysokiej temperatury oleju
C. niskiej temperatury oleju
D. wysokiego ciśnienia oleju
Wysoka temperatura oleju hydraulicznego prowadzi do zmniejszenia jego lepkości. Wzrost temperatury powoduje, że cząsteczki oleju zaczynają się poruszać szybciej, co skutkuje łatwiejszym przepływem i zmniejszeniem oporu. Zjawisko to jest szczególnie istotne w systemach hydraulicznych, gdzie odpowiednia lepkość oleju jest kluczowa dla efektywności działania układów. Na przykład, w maszynach budowlanych lub przemysłowych, gdzie olej hydrauliczny pełni rolę siły napędowej, jego właściwa lepkość zapewnia skuteczne przekazywanie mocy i minimalizuje ryzyko awarii elementów układu. W wielu standardach, takich jak ISO 6743-4, określają się wymagania dotyczące lepkości olejów hydraulicznych w zależności od temperatury pracy, co pozwala na dobór odpowiednich produktów do konkretnych zastosowań. W praktyce, monitorowanie temperatury oleju oraz jego lepkości jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania układów hydraulicznych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. wibracji
B. hałasów
C. prędkości
D. ciepłoty
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 35

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. regulacyjne
B. zwrotne
C. rozdzielające
D. dławiące
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Indukcyjność przewodnika
B. Gęstość prądu elektrycznego
C. Rezystancja przewodnika
D. Natężenie prądu elektrycznego
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakim skrótem literowym określa się język drabinkowy?

A. FBD
B. STL
C. IL
D. LD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.