Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 kwietnia 2025 11:44
  • Data zakończenia: 11 kwietnia 2025 11:57

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. ochronnik przeciwprzepięciowy
B. wyłącznik różnicowoprądowy
C. bezpiecznik instalacyjny
D. wyłącznik instalacyjny płaski
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Podwójną lub wzmocnioną izolację
C. Separację urządzeń
D. Ochronne obniżenie napięcia
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Krzyżowy
C. Świecznikowy
D. Jednobiegunowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aM
B. gG
C. aL
D. gR
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt duże wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 14

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 12 szt.
B. 6 szt.
C. 10 szt.
D. 2 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. przepięcie
C. przeciążenie
D. upływ prądu
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 18

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. wymiany gniazd zasilających
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przepięciem
B. przeciążeniem
C. zwarciem
D. porażeniem
Wybór niewłaściwej odpowiedzi może prowadzić do nieporozumień na temat funkcji wyłączników różnicowoprądowych. Zwarcie, czyli nagłe połączenie dwóch przewodów o różnym potencjale, prowadzi do zwiększonego przepływu prądu, co zazwyczaj jest zabezpieczane przez wyłączniki automatyczne (np. wyłączniki nadprądowe), a nie przez RCD, które nie reagują na wzrost natężenia prądu, lecz na różnice w prądzie między przewodami. Przepięcia, które mogą być wynikiem nagłych skoków napięcia, również nie są głównym celem RCD. Przeciążenie, z kolei, to sytuacja, gdy obciążenie przekracza nominalną wartość zabezpieczeń, co ponownie wymaga reakcji wyłączników nadprądowych. Kluczowym błędem jest zrozumienie, że RCD nie zabezpiecza przed skutkami zwarcia, przeciążenia ani przepięcia, lecz tylko przed porażeniem elektrycznym wynikającym z upływu prądu. Dobrą praktyką jest stosowanie RCD jako dodatkowego zabezpieczenia w instalacjach elektrycznych, ale nie należy mylić ich funkcji z innymi rodzajami zabezpieczeń, co może prowadzić do niewłaściwego stosowania urządzeń i potencjalnych zagrożeń dla użytkowników.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,37 mA
B. ±0,02 mA
C. ±2,35 mA
D. ±0,35 mA
W przypadku obliczania błędu pomiarowego, niektóre osoby mogą błędnie interpretować podaną dokładność miernika. Zwykle błąd pomiarowy składa się z dwóch komponentów: błędu procentowego oraz wartości stałej. W opisywanym przypadku, dokładność miernika wynosi ±(1 % +2), co oznacza, że należy to wyraźnie zrozumieć, jako wpływ zarówno względny, jak i bezwzględny na dokładność pomiaru. Wybór wartości ±0,35 mA jako błędu pomiarowego może sugerować, że osoba skupia się wyłącznie na składniku procentowym, ignorując istotny dodatek 2 mA. Takie podejście prowadzi do zaniżenia rzeczywistego błędu, co może skutkować niepoprawnymi wnioskami w analizach eksperymentalnych. Inna niepoprawna odpowiedź, która sugeruje ±2,35 mA, wynika z nieprawidłowego zrozumienia granic błędu pomiarowego; wartość ta jest zbyt wysoka w odniesieniu do rzeczywistych pomiarów, ponieważ przy podanych wartościach, jak 35 mA, błąd powinien być znacznie mniejszy. Osoby myślące, że błąd pomiarowy może być tak duży, mogą nie zrozumieć zasadniczej różnicy pomiędzy błędem całkowitym a rzeczywistym błędem odczytu. W kontekście praktycznym, takie błędne interpretacje mogą prowadzić do efektywnych strat w projektach inżynieryjnych, gdzie dokładność pomiarów jest kluczowa dla bezpieczeństwa i efektywności urządzeń. Warto zaznaczyć, że każdy pomiar powinien być analizowany zarówno pod kątem błędów systematycznych, jak i losowych, co jeszcze bardziej podkreśla znaczenie dokładności w kontekście zastosowań przemysłowych.

Pytanie 23

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω

A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy V
D. Zwarcie międzyzwojowe w fazie W
Wybór odpowiedzi związanych z przerwami w uzwojeniach fazy V lub W oraz zwarciami międzyzwojowymi w fazie V jest błędny. Kluczowym aspektem, który należy wziąć pod uwagę przy analizie pomiarów rezystancji uzwojeń, jest to, że przerywanie jednego z uzwojeń skutkuje brakiem możliwości zasilania danej fazy, co objawia się znacznym spadkiem wartości rezystancji, a nie wyraźnym różnicowaniem między poszczególnymi uzwojeniami. Odpowiedzi te mogą prowadzić do błędnych wniosków, gdyż nie uwzględniają fundamentalnych zasad działania silników indukcyjnych, gdzie zwarcie międzyzwojowe w fazie W wskazuje na fakt, że występuje tam wewnętrzne uszkodzenie, które skutkuje zmniejszeniem rezystancji. Ignorowanie takich różnic może prowadzić do niepoprawnej analizy stanu silnika, co z kolei skutkuje nieadekwatnym podejściem do diagnostyki. W praktyce, zdiagnozowanie uszkodzeń w silnikach indukcyjnych wymaga starannego podejścia oraz znajomości specyfikacji technicznych, które definiują normy operacyjne dla urządzeń. Wartości rezystancji uzwojeń powinny być monitorowane regularnie, aby wykrywać wszelkie anomalie, co jest zgodne z najlepszymi praktykami w zarządzaniu konserwacją i diagnostyką urządzeń elektrycznych.

Pytanie 24

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/300 V
B. 100/100 V
C. 450/750 V
D. 300/500 V
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 25

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
D. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
Analizując podane odpowiedzi, można zauważyć, że wiele z nich odnosi się do parametrów technicznych innych typów urządzeń, co prowadzi do zamieszania. Na przykład, odpowiedź dotycząca typów modułów, zakresu zliczania czy rodzajów wyjścia jest bardziej związana z licznikami elektronicznymi niż przekaźnikami bistabilnymi. Liczniki mają swoje unikalne funkcje, takie jak zliczanie impulsów, co nie ma zastosowania w kontekście przekaźnika bistabilnego. Wiele osób może mylić te dwa urządzenia, myśląc, że mają one podobne zastosowania, co jest błędne. Kolejny przykład to podanie parametrów takich jak prąd znamionowy czy liczba biegunów, które są bardziej związane z przekaźnikami jedno- lub wielobiegunowymi, a nie z bistabilnymi. Niezrozumienie różnicy między tymi typami przekaźników może prowadzić do błędnych decyzji przy doborze komponentów w projektach automatyzacji. Ponadto, niektóre odpowiedzi zawierają specyfikacje dotyczące obciążalności zwarciowej oraz częstotliwości znamionowej, co jest charakterystyczne dla urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. W kontekście przekaźników bistabilnych, te informacje są zbędne, ponieważ ich działanie opiera się na mechanizmie zatrzymaniu stanu, a nie na regularnym przełączaniu. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania systemów automatyki i unikania kosztownych błędów w doborze komponentów.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 6,0 mm2
B. 1,5 mm2
C. 4,0 mm2
D. 2,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Pomiar rezystancji uziemienia.
B. Lokalizacja przewodów pod tynkiem.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Badanie kolejności faz.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie V
C. Zwarcie międzyzwojowe w fazie W
D. Przerwa w uzwojeniu fazy V
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 33

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Zgodnie z instrukcją obsługi danego odbiornika
B. Co najmniej raz na dwa lata
C. Przed każdym uruchomieniem urządzenia
D. Każdorazowo podczas badań okresowych instalacji
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 34

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Megaomomierza
B. Amperomierza
C. Watomierza
D. Omomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór innej odpowiedzi wynika z nieporozumienia dotyczącego działania przekaźników oraz ich zastosowania w układach oświetleniowych. Kluczowym błędem w rozumieniu tego schematu jest pominięcie sekwencji aktywacji styków przekaźnika. Przykładowo, w przypadku odpowiedzi A, mogło wystąpić przekonanie, że aktywne są inne styki, co prowadziłoby do błędnych wniosków na temat stanu żarówek. W rzeczywistości, w analizowanym układzie, każdy styk odpowiada za inny stan żarówki, co jest istotnym aspektem przy projektowaniu systemów automatyki. Inne odpowiedzi mogą sugerować, że obie żarówki świecą w różnych sekwencjach bez uwzględnienia niezależności ich działania, co jest błędem w zrozumieniu funkcji przekaźnika. Prowadzi to do nieprawidłowego wyobrażenia o możliwości jednoczesnego sterowania wieloma obwodami, co nie jest zgodne z rzeczywistym działaniem układu. Dodatkowo, błędne odpowiedzi mogą wynikać z nieadekwatnego pojmowania cyklicznego charakteru pracy układów sterujących. W praktyce, zrozumienie schematów i działania przekaźników jest kluczowe dla efektywnej automatyzacji, a także dla przestrzegania dobrych praktyk inżynieryjnych. Dlatego ważne jest, aby dokładnie analizować każdy element układu przed podjęciem decyzji, co pozwoli na eliminację pomyłek i lepsze zrozumienie jego funkcji.

Pytanie 38

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 16 mm2
B. 25 mm2
C. 4,0 mm2
D. 10 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 39

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. prądu różnicowego oraz czasu jego działania
B. napięcia sieciowego oraz prądu obciążenia
C. napięcia sieciowego oraz prądu różnicowego
D. prądu obciążenia oraz czasu jego działania
Działanie instalacji elektrycznej ma kluczowe znaczenie dla naszego bezpieczeństwa, więc musimy wiedzieć, jakie pomiary są ważne do sprawdzenia wyłącznika różnicowoprądowego. Odpowiedzi, które mówią o pomiarze prądu obciążenia i czasu zadziałania, są nieco wprowadzone w błąd. Prąd obciążenia to ten, który zjadają nasze urządzenia, więc nie ma to bezpośredniego związku z działaniem RCD, które ma być ochroną przed prądem różnicowym. Podobnie, pomiar napięcia sieci nie jest bezpośrednio związany z RCD, bo to urządzenie działa na innej zasadzie. Tak naprawdę pomiar napięcia i prądu obciążenia nie uwzględnia scenariuszy, w których może pojawić się niebezpieczny prąd różnicowy. Dlatego pamiętajmy, że RCD działa na zasadzie wykrywania prądu różnicowego, a nie na podstawie innych parametrów, co czyni te podejścia nieodpowiednimi w kontekście ochrony.

Pytanie 40

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zamiana wszystkich źródeł oświetlenia w oprawach
B. Sprawdzenie stanu izolacji oraz powłok przewodów
C. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
D. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.