Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 15 maja 2025 16:52
  • Data zakończenia: 15 maja 2025 17:04

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 2,5%
B. 20%
C. 25%
D. 75%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 2

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Chromatografia
B. Destylacja
C. Sublimacja
D. Krystalizacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Losowo należy pobierać próbki z opakowań

A. z dolnej części opakowania
B. z krawędzi opakowania
C. z kilku punktów w obrębie opakowania
D. z górnej części opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 5

Analiza technicznego kwasu solnego dała następujące wyniki: 30% HCl, 0,008% H2SO4, 0,04% Fe.
Korzystając z zamieszczonej tabeli wymagań, określ gatunek kwasu, pamiętając, że decyduje o nim najgorszy wskaźnik.

Wymagania chemiczne dotyczące kwasu siarkowego
WymaganiaGatunki
IIIIIIIV
Chlorowodór, %> 33> 29> 28> 27
Kwas siarkowy(VI) w przel. na SO42-, %< 0,009< 0,5< 1,6< 1,8
Żelazo (Fe3+), %< 0,005< 0,03< 0,03< 0,05

A. III
B. II
C. IV
D. I
Wybór innego gatunku kwasu jest wynikiem nieprawidłowej analizy danych dotyczących zawartości składników. Na przykład, jeżeli ktoś wybrał gatunek III, może pomyśleć, że zawartość HCl decyduje o gatunku, co jest błędnym podejściem. Klasyfikacja kwasów nie opiera się na najwyższej zawartości HCl, ale na najgorszym wskaźniku, którym w tej sytuacji jest zawartość żelaza. Gatunek III dopuszcza znacznie niższe wartości dla żelaza, co dyskwalifikuje tę odpowiedź, ponieważ obecność 0,04% Fe3+ znacznie przekracza dopuszczalne granice tego gatunku. Ponadto, wybór gatunku II lub I również opiera się na błędnym zrozumieniu norm, które wymagają, by wszystkie wskaźniki były w granicach określonych dla danego gatunku. W praktyce, zrozumienie, że najgorszy wskaźnik definiuje gatunek, jest kluczowe dla prawidłowej klasyfikacji. Ignorowanie tego zasady prowadzi do wyborów, które mogą skutkować niewłaściwym zastosowaniem kwasów w przemyśle chemicznym, gdzie precyzyjne klasyfikacje są niezbędne do zapewnienia bezpieczeństwa i zgodności z normami. Warto podkreślić, że w przemyśle chemicznym, gdzie stosuje się różne gatunki kwasów, kluczowe jest zrozumienie zasad klasyfikacji, aby uniknąć potencjalnych ryzyk związanych z ich używaniem.

Pytanie 6

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. redestylowanej
B. destylowanej
C. demineralizowanej
D. mineralizowanej
Woda mineralizowana to woda, która zawiera rozpuszczone minerały, takie jak wapń, magnez czy potas. Jej stosowanie w laboratoriach chemicznych jest nieodpowiednie, ponieważ te minerały mogą wprowadzać zakłócenia w reakcjach chemicznych oraz analizach, prowadząc do błędnych wyników. Woda redestylowana nie jest powszechnie używana jako termin w laboratoriach; destylacja jest procesem polegającym na odparowaniu cieczy i skropleniu jej pary, co może usunąć zanieczyszczenia, ale nie jest to proces wymiany jonów, który koncentruje się na eliminacji soli. Destylowana woda, choć czysta, może nie spełniać norm jakości demineralizowanej, ponieważ nie do końca eliminuje wszystkie rozpuszczone substancje chemiczne. Typowym błędem jest mylenie procesu destylacji z demineralizacją, co prowadzi do niewłaściwego doboru wody do eksperymentów. W laboratorium kluczowe jest stosowanie wody o odpowiednim stopniu czystości, a demineralizowana woda jest standardem, który zapewnia powtarzalność i precyzję wyników, co jest niezbędne w badaniach naukowych.

Pytanie 7

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. chemicznie czysty.
B. czysty.
C. czysty do analizy.
D. techniczny.
Odpowiedź "czysty do analizy" jest poprawna, ponieważ odczynniki chemiczne o poziomie czystości wynoszącym 99,9-99,99% są klasyfikowane jako czyste do analizy, co oznacza, że spełniają wysokie standardy czystości wymagane do prowadzenia precyzyjnych analiz chemicznych. Takie substancje są niezbędne w laboratoriach analitycznych, gdzie dokładność wyników jest kluczowa. Przykłady zastosowania obejmują analizę substancji aktywnych w farmaceutyce, gdzie nawet niewielkie zanieczyszczenia mogą wpłynąć na skuteczność leku. Zgodnie z normami, takimi jak ISO 17025, laboratoria muszą korzystać z odczynników o określonych parametrach czystości, aby zapewnić wiarygodność i powtarzalność wyników. Odczynniki czyste do analizy są również stosowane w badaniach środowiskowych, gdzie precyzyjne pomiary są kluczowe dla oceny jakości wody czy powietrza. Wybór odpowiednich odczynników gwarantuje, że wyniki są nie tylko dokładne, ale także zgodne z regulacjami prawnymi i standardami jakości.

Pytanie 8

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 0,184 g/cm3
B. 0,184 g/dm3
C. 1,84 g/cm3
D. 1,84 g/dm3
Poprawna odpowiedź to 1,84 g/cm3, co wynika z bezpośredniego przeliczenia danych z etykiety kwasu siarkowego(VI). Etykieta informuje, że 1 litr kwasu waży 1,84 kg, co przelicza się na 1840 g. Gęstość substancji definiuje się jako stosunek masy do objętości. W tym przypadku, masa 1840 g umieszczona w objętości 1000 cm3 daje wynik 1,84 g/cm3. W praktyce gęstość kwasu siarkowego(VI) jest istotna w wielu zastosowaniach przemysłowych, zwłaszcza w chemii i procesach produkcyjnych. Dobrą praktyką jest zawsze zapoznanie się z danymi na etykietach substancji chemicznych, zwłaszcza gdy są one używane w laboratoriach lub w przemyśle, aby uniknąć błędnych obliczeń i zapewnić bezpieczeństwo pracy. Gęstość kwasu siarkowego(VI) ma także znaczenie przy obliczeniach dotyczących stężenia roztworów oraz w przypadku ich transportu i przechowywania.

Pytanie 9

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
B. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
C. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
D. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
Podawane koncepcje, wskazujące na możliwość mieszania roztworów kwasów i zasad bez neutralizacji, są nieprawidłowe. W rzeczywistości, choć teoretycznie takie mieszanie może prowadzić do ich wzajemnego zobojętnienia, w praktyce niesie ze sobą wiele zagrożeń. Po pierwsze, niekontrolowane łączenie silnych kwasów z mocnymi zasadami może prowadzić do gwałtownych reakcji, wydzielania dużych ilości ciepła oraz potencjalnego rozprysku niebezpiecznych substancji. Mieszanie powinno być przeprowadzane w kontrolowanych warunkach, z odpowiednim sprzętem ochronnym i w pojemnikach przeznaczonych do tego celu. Kolejnym błędem jest sugerowanie, że odpady te można wylewać do kanalizacji, co jest absolutnie niedopuszczalne. Wylanie roztworów chemicznych do kanalizacji może spowodować zanieczyszczenie wód gruntowych oraz systemu wodociągowego, co jest sprzeczne z przepisami ochrony środowiska. Również stwierdzenie, że odpady należy silnie zatężyć i zobojętniać stężonymi roztworami NaOH i HCl jest niebezpieczne. Tego typu praktyki mogą prowadzić do powstawania niebezpiecznych oparów oraz reakcji egzotermicznych, które mogą być trudne do kontrolowania. Aby zapewnić bezpieczeństwo i zgodność z przepisami, najlepiej jest stosować procedury ustalone przez organizacje zajmujące się ochroną zdrowia i środowiska, które przewidują odpowiednie metody neutralizacji i przechowywania odpadów chemicznych.

Pytanie 10

Próbka, której celem jest ustalenie poziomu składników, dla których oznaczenia przygotowane przez różne laboratoria są niezgodne, to próbka

A. do badań
B. laboratoryjna
C. jednostkowa
D. rozjemcza
Wybór odpowiedzi związanych z terminami "do badań", "laboratoryjna" oraz "jednostkowa" wskazuje na nieporozumienie dotyczące specyfiki próbki rozjemczej. Próbka do badań odnosi się ogólnie do materiału, który ma być poddany analizie, bez ukierunkowania na rozwiązywanie problemów związanych z niezgodnością wyników. Termin ten jest zbyt ogólny i nie odnosi się bezpośrednio do sytuacji, w której różne laboratoria mają odmienne wyniki analityczne. Próbka laboratoryjna również nie jest terminem wskazującym na jej charakterystykę rozjemczą, a raczej definiuje, że próbka jest analizowana w warunkach laboratoryjnych, co nie musi mieć związku z jej reprezentatywnością. Z kolei próbka jednostkowa odnosi się do konkretnego, jednorazowego pomiaru lub analizy, co w praktyce nie uwzględnia procesów porównawczych między różnymi wynikami analitycznymi. Często można spotkać się z błędnym myśleniem, że wszystkie próbki stosowane w laboratoriach mają podobne funkcje, co prowadzi do zafałszowanych wniosków i niewłaściwego podejścia do analizy danych. W rzeczywistości, niezgodności wyników mogą wynikać z wielu czynników, takich jak różnice w metodach analitycznych, przygotowaniu próbek czy stosowanych technologiach, co czyni użycie próbki rozjemczej niezbędnym krokiem w procesie zapewniania jakości i zgodności.

Pytanie 11

Na opakowaniu fenolu umieszcza się przedstawiony na rysunku znak ostrzegawczy, który oznacza, że jest to substancja

Ilustracja do pytania
A. toksyczna.
B. wybuchowa.
C. drażniąca.
D. utleniająca.
Odpowiedź 'toksyczna' jest poprawna, ponieważ znak ostrzegawczy przedstawiający czaszkę z kośćmi skrzyżowanymi informuje o substancji, która może być niebezpieczna dla zdrowia. Fenol, jako substancja chemiczna, wykazuje wysoką toksyczność, co może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia narządów wewnętrznych oraz zagrażających życiu skutków po kontakcie z organizmem. Oznakowanie substancji chemicznych zgodnie z normami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy, laboratorjach oraz w gospodarstwach domowych. Znak ten ma na celu ostrzeżenie użytkowników o konieczności zachowania szczególnej ostrożności, stosowania odpowiednich środków ochrony osobistej, takich jak rękawice czy maski, oraz przestrzegania zaleceń dotyczących przechowywania i używania fenolu. Zrozumienie tych informacji jest niezbędne dla każdego, kto ma do czynienia z takimi substancjami w codziennej pracy lub badaniach.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. filtracja
B. dekantacja
C. krystalizacja
D. destylacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 14

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. laboratoryjną
B. pierwotną
C. jednostkową
D. średnią
Odpowiedzi "pierwotną", "średnią" oraz "laboratoryjną" nie są poprawne, ponieważ dotyczą one różnych koncepcji związanych z pobieraniem próbek, które nie pasują do opisanego kontekstu. Próbka pierwotna zazwyczaj odnosi się do materiału, który nie został jeszcze poddany analizie ani obróbce w laboratorium; tymczasem w naszym przypadku próbka została już pobrana z opakowania. Z kolei pojęcie próbki średniej sugeruje, że próbki z różnych jednostek są łączone w celu uzyskania jednej reprezentatywnej próbki. Chociaż takie podejście może być stosowane w niektórych analizach statystycznych, w sytuacji opisanej w pytaniu, bardziej adekwatne byłoby mówienie o próbkach jednostkowych. Odpowiedź "laboratoryjną" jest myląca, ponieważ odnosi się do próbki, która została już poddana działaniu w laboratorium, co nie odpowiada definicji próbki pobieranej z opakowania. Typowym błędem myślowym jest utożsamienie próbki średniej z jednostkową, gdyż mogą one pełnić różne funkcje w procesie analizy jakości. Właściwe zrozumienie różnicy między tymi terminami ma kluczowe znaczenie w kontekście zapewnienia jakości w różnych branżach.

Pytanie 15

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 11,2 dm3
B. 4,48 dm3
C. 2,24 dm3
D. 22,4 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 16

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. gorącą wodę
B. mieszaninę chromową
C. słaby kwas
D. słabą zasadę
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 17

Zbiór próbek pierwotnych tworzy próbkę

A. laboratoryjną
B. analityczną
C. jednostkową
D. ogólną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 18

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 5,13
B. 4,39
C. 4,94
D. 4,58
Odpowiedzi, które nie wynoszą 4,58, mogą być efektem kilku znanych błędów w obliczeniach pH roztworów buforowych. Często się zdarza, że ktoś myśli, że wystarczy spojrzeć na stężenia kwasu i zasady, a nie uwzględnia ich proporcje, co prowadzi do zafałszowanych wyników. Na przykład, jeżeli ktoś źle obliczy stosunek stężeń, może myśleć, że pH powinno być wyższe niż w rzeczywistości, co jest typowe dla takich odpowiedzi jak 4,94 lub 5,13. Często również pomija się pKa kwasu octowego albo nie zna się jego wartości, co skutkuje mylnym wrażeniem, że pH buforu można określić na podstawie ogólnych zasad chemicznych. W praktyce, zrozumienie roli pKa przy obliczaniu pH jest super ważne, bo mówi nam, w jakim zakresie pH substancja dobrze działa jako bufor. Dlatego przy obliczaniu pH roztworów buforowych warto pamiętać o równaniu Hendersona-Hasselbalcha i znać pKa substancji, żeby dobrze ocenić właściwości buforowe roztworu.

Pytanie 19

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
B. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
C. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
Wybór dodania 10 cm3 stężonego kwasu solnego do wody destylowanej jest niewłaściwy z punktu widzenia zasad bezpieczeństwa i chemii. Kiedy stężony kwas dodaje się do wody, zachodzi intensywna reakcja egzotermiczna, która może prowadzić do gwałtownego wrzenia i rozprysku cieczy, co stwarza poważne ryzyko poparzeń chemicznych. W praktyce laboratoryjnej, taki sposób rozcieńczania nie tylko jest niebezpieczny, ale także niezgodny z powszechnie przyjętymi standardami ochrony osobistej i zbiorników, które wymagają użycia odpowiednich środków ochrony osobistej, takich jak gogle i rękawice. Ponadto, nieodpowiednia kolejność mieszania może prowadzić do nieuzyskania pożądanej koncentracji roztworu, co wpływa na wyniki przeprowadzanych reakcji chemicznych. Wybór tej metody często wynika z braku wiedzy na temat właściwych procedur laboratyjnych i może prowadzić do niezamierzonych konsekwencji. Tego typu błędy są szczególnie powszechne wśród osób, które nie mają doświadczenia w pracy z substancjami niebezpiecznymi, a także w sytuacjach, gdzie zasady BHP nie są przestrzegane. Dlatego też, kluczowe jest zrozumienie i stosowanie się do zasad bezpieczeństwa przy pracy z kwasami, aby minimalizować wszelkie ryzyko związane z ich używaniem.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Wskaż definicję fiksanali?

A. Kapsułki zawierające niewielkie ilości substancji chemicznej
B. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
C. Małe ampułki z nieokreśloną masą substancji chemicznej
D. Małe ampułki ze ściśle określoną masą substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 22

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. światła
B. ciepła
C. powietrza
D. tlenu
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 23

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. kwas
B. woda destylowana
C. roztwór wodorowęglanu potasu
D. czerwień metylowa
Czerwony metylowy, wodorowęglan potasu oraz woda destylowana nie są titrantami w kontekście miareczkowania opisanego w pytaniu. Czerwień metylowa jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości roztworu, jednak nie bierze udziału w samym procesie miareczkowania jako reagent. Używa się jej jedynie do wizualizacji końca miareczkowania, co jest istotne dla interpretacji wyników, ale nie wpływa na reakcję chemiczną, która się odbywa. Wodorowęglan potasu jest substancją, którą miareczkujemy, a nie titrantem; jego rola jest pasywna, jako że reaguje z kwasem, a nie dostarcza go do roztworu. Woda destylowana służy jedynie jako rozpuszczalnik, ułatwiający rozprowadzenie wodorowęglanu potasu w kolbie, ale sama w sobie nie ma roli reagenta w miareczkowaniu. Zrozumienie ról różnych substancji w procesie miareczkowania jest kluczowe, aby prawidłowo przeprowadzać eksperymenty chemiczne. Umiejętność ta wymaga znajomości nie tylko reagujących substancji, ale również mechanizmów reakcji oraz odpowiednich wskaźników, co pozwala na uzyskanie dokładnych wyników analitycznych.

Pytanie 24

Wagi laboratoryjne można klasyfikować według nośności oraz precyzji na

A. periodyczne i aperiodyczne
B. dźwigniowe i elektroniczne
C. techniczne i analityczne
D. analityczne i szalkowe
Wagi laboratoryjne można podzielić na dwie główne grupy: techniczne i analityczne. Wagi techniczne używamy w różnych sytuacjach, gdzie nie potrzebujemy aż tak precyzyjnych pomiarów. Przykłady to przemysł czy laboratoria ogólne. Z kolei wagi analityczne są znacznie dokładniejsze, co czyni je niezbędnymi w badaniach chemicznych. Tam każdy gram, a nawet mikrogram, ma znaczenie. W laboratoriach farmaceutycznych, na przykład, dokładne ważenie składników aktywnych jest kluczowe dla skuteczności leków. Spełniają one określone normy ISO, więc mamy pewność, że wyniki są wiarygodne. To naprawdę ważne, bo chodzi o bezpieczeństwo pacjentów i jakość terapii.

Pytanie 25

Jaką substancję należy koniecznie oddać do utylizacji?

A. Chromian(VI) potasu
B. Gliceryna
C. Glukoza
D. Sodu chlorek
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 26

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór chlorku baru
B. uniwersalny papierek wskaźnikowy
C. roztwór azotanu srebra
D. roztwór szczawianu potasu
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
B. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
C. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
D. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
Sformułowania, które sugerują, że reakcja jest egzotermiczna, są mylne. Ekspansja gazu, która występuje w wyniku wydzielania amoniaku, jest kluczowym czynnikiem w analizie tej reakcji. Egzotermiczność oznacza, że reakcja wydziela ciepło, co w tym przypadku nie ma miejsca. Ponadto, twierdzenie o nieodwracalności reakcji związanej z wydzieleniem soli jest również nieprecyzyjne – chociaż reakcja prowadzi do powstania soli, kluczową rolę odgrywa wydzielanie gazu, a nie samej soli. W przypadku reakcji endotermicznych, często występują mylne przekonania, że jedynie wydzielanie ciepła może być oznaką reakcji spontanicznej. W rzeczywistości, spontaniczność reakcji chemicznej można zrozumieć przez analizę zmian entropii i energii swobodnej. Kluczowym błędem jest także przypisanie roli równowagi chemicznej tylko do produktów stałych, ignorując znaczenie produktów gazowych. Warto również podkreślić, że niektóre reakcje, mimo że energetycznie niekorzystne, mogą zachodzić na skutek zwiększenia entropii, co jest szczególnie istotne w kontekście gazów. Zrozumienie tych koncepcji jest niezbędne dla analizy reakcji chemicznych w praktyce laboratoryjnej i przemysłowej.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Chemikalia, dla których upłynął okres przydatności,

A. można wykorzystać do końca opakowania
B. można je stosować, pod warunkiem że substancja pozostaje czysta
C. powinny być przechowywane w magazynie
D. należy zutylizować z odpadami chemicznymi
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 32

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 1
B. 11
C. 13
D. 3
pH roztworu NaOH nie może wynosić 1, 3 ani 13, bo to się mija z podstawami chemii i tym, jak działają mocne zasady. pH 1 oznaczałoby, że mamy bardzo mocny kwas, a to nie zgadza się z tym, że NaOH jest zasadą. Żeby dobrze zrozumieć pH, trzeba znać skalę pH, która w gruncie rzeczy jest logarytmicznym wskaznikiem stężenia jonów wodorowych. NaOH, jako mocna zasada, dodaje do roztworu jony OH-, a ich obecność jest ważna, gdy patrzymy na pH. pH = 3 sugerowałoby, że mamy do czynienia z jakimś kwasem, a w tym przypadku to nie ma miejsca, bo roztwór jest zasadowy. Z kolei pH 13 jest bliskie poprawnej wartości, ale nie jest właściwe, bo pH roztworu NaOH w tym stężeniu jest na pewno niższe. Ludzie często mylą pH z pOH i sądzą, że mocne zasady mają pH bliskie 14 w niższych stężeniach, ale w rzeczywistości pH dla mocnych zasad może być znacznie niższe, zależnie od ich stężenia. Dlatego, żeby poprawnie analizować pH roztworów zasadowych, musisz zrozumieć ich chemiczne właściwości i to, jak się dysocjują w wodzie.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Żadne.
B. Tylko 1 i 2.
C. Wszystkie.
D. Tylko 3.
Odpowiedź "Wszystkie" jest jak najbardziej na miejscu! Wszystkie opakowania (1, 2 i 3) spełniają normy klasy A według wymagań produktu. Zawierają bezbarwną ciecz, która przeszła testy na substancje chemiczne. To ważne, bo każde z tych opakowań mieści się w granicach określonych w normach, co znaczy, że są zgodne z wymaganiami jakościowymi. Z mojego doświadczenia, normy klasy A są kluczowe w wielu branżach, szczególnie w chemii czy farmacji, gdzie jakość i bezpieczeństwo to podstawa. Dobrze jest też pamiętać, że trzymanie się norm w pakowaniu jest mega ważne, bo złe opakowanie może zaszkodzić produktowi. Dlatego każdy, kto pracuje w produkcji, powinien znać te normy i się ich trzymać, żeby zapewnić najwyższą jakość i bezpieczeństwo produktów.

Pytanie 35

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. zmierzenie gęstości tego roztworu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 36

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. adsorpcja
B. rektyfikacja
C. destylacja
D. ekstrakcja
Rektyfikacja, adsorpcja i destylacja to różne procesy, które chociaż są używane do rozdzielania składników, to jednak nie nadają się do tego, co opisano w pytaniu o ekstrakcję. Rektyfikacja to technika, gdzie wielokrotnie skrapla się i odparowuje ciecz, co sprawdza się zazwyczaj przy separacji składników o podobnych temperaturach wrzenia. Jest to popularne w przemyśle petrochemicznym i przy produkcji alkoholi, ale nie chodzi tu o to, żeby selektywnie usuwać składniki z roztworu przez rozpuszczalnik. Adsorpcja z kolei, to proces, gdzie cząsteczki substancji przywierają do powierzchni ciała stałego i stosuje się go w filtracji oraz oczyszczaniu gazów, ale to jednak różni się od ekstrakcji, bo nie polega na rozpuszczaniu składników. Natomiast destylacja separuje składniki cieczy na podstawie różnic w temperaturach wrzenia, co znów mija się z pytaniem o rozpuszczalnik do usuwania składników. Te pojęcia często się mylą, bo wszystkie odnoszą się do procesów separacyjnych, ale ich działanie i zastosowanie są zupełnie różne. Kluczowy błąd to zakładanie, że wszystkie metody separacji są zamienne, co sprawia, że mogą wystąpić nieporozumienia w laboratoriach czy przemyśle.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 2,50 g stałego NaOH.
B. 25,0 g stałego NaOH.
C. 2,00 g stałego NaOH.
D. 0,05 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 39

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 5 miesięcy
B. 1 miesiąc
C. 7 miesięcy
D. 3 miesiące
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 40

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodę
B. tlenek cynku i wodorotlenek sodu
C. cynk i wodę
D. chlorek cynku i wodorotlenek sodu
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.