Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 10:58
  • Data zakończenia: 19 maja 2025 11:26

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. utrwalania
B. oczyszczania
C. rozcieńczania
D. mianowania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 2

Przedstawiony piktogram powinien być zamieszczony na butelce zawierającej

Ilustracja do pytania
A. siarczan(VI) sodu.
B. perhydrol.
C. chlorek baru.
D. azotan(V) rtęci.
Perhydrol, czyli nadtlenek wodoru w stężeniu przekraczającym 35%, jest substancją chemiczną, która w wyniku swoich właściwości żrących wymaga szczególnego oznakowania, w tym użycia piktogramu przedstawiającego substancje wywołujące korozję. Przykładem zastosowania perhydrolu jest jego użycie w dezynfekcji oraz jako środek utleniający w różnych procesach chemicznych. Zgodnie z przepisami dotyczącymi klasyfikacji i oznakowania substancji chemicznych (CLP), substancje te muszą być odpowiednio oznaczone, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników. Ponadto, perhydrol może reagować z wieloma innymi substancjami, co zwiększa jego potencjalnie niebezpieczne właściwości. Zatem, odpowiednie oznakowanie zgodne z normami bezpieczeństwa pracy jest kluczowym elementem obiegu dokumentacji oraz praktyk laboratoryjnych.

Pytanie 3

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. stężonym kwasem azotowym(V)
B. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
C. rozcieńczonym kwasem azotowym(V)
D. mieszaniną kwasów azotowego(V) oraz solnego
Reakcja nitrowania to proces chemiczny, w którym do organicznych substratów wprowadza się grupy nitrowe (-NO2). Najczęściej stosowaną metodą tego procesu jest użycie mieszaniny kwasów azotowego(V) i siarkowego(VI). Kwas azotowy(V) jest źródłem grupy nitrowej, natomiast kwas siarkowy(VI) działa jako czynnik osuszający, wspomagając reaktywność kwasu azotowego. W praktyce nitrowanie jest kluczowym etapem w syntezie wielu związków organicznych, takich jak barwniki, leki oraz środki wybuchowe. Na przykład, proces ten jest stosowany w produkcji nitrobenzenu, który jest istotnym prekursorem w syntezie chemikaliów przemysłowych. Dzięki dobrze kontrolowanym warunkom reakcji, można uzyskać wysokie wydajności oraz selektywność w nitrowaniu, co jest zgodne z dobrymi praktykami w chemii organicznej. Odpowiednia kontrola temperatury i stężenia reagentów jest niezbędna, aby uniknąć niepożądanych reakcji ubocznych, co jest kluczowe w przemyśle chemicznym.

Pytanie 4

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 12±1°C
B. 16±2°C
C. 5±3°C
D. 9±1°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 5

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. UV
B. na sucho
C. mikrofalową
D. na mokro
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 6

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z pożarem
B. z wybuchem
C. z poparzeniem
D. z lotnością
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 7

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. rzadkie
B. twarde
C. średnio gęste
D. bardzo gęste
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.

Pytanie 8

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. azotowym(V)
B. bromowodorowym
C. chlorowodorowym
D. siarkowym(VI)
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 9

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. mieszaninę chromową
B. słaby kwas
C. słabą zasadę
D. gorącą wodę
Mieszanina chromowa, składająca się najczęściej z kwasu siarkowego i dichromianu potasu, jest skutecznym środkiem do usuwania zanieczyszczeń tłuszczowych z szkła miarowego. Tłuszcze, które są trudne do usunięcia wodą czy łagodnymi detergentami, ulegają skutecznemu rozkładowi pod wpływem silnych utleniaczy obecnych w tej mieszaninie. Dzięki zastosowaniu mieszaniny chromowej, można osiągnąć wysoki poziom czystości szkła, co jest kluczowe w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne. Przykładem zastosowania tej metody jest czyszczenie kolb, pipet i innych przyrządów pomiarowych, które były używane do pracy z substancjami organicznymi. W laboratoriach stosuje się standardy czyszczenia, które zalecają użycie odpowiednich reagentów, aby nie tylko oczyścić szkło, ale również nie uszkodzić go chemicznie. Warto też pamiętać, że po użyciu mieszaniny chromowej konieczne jest dokładne wypłukanie szkła wodą destylowaną, aby usunąć pozostałości reagentów.

Pytanie 10

Próbka wzorcowa to próbka

A. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
B. przeznaczona w całości do jednego oznaczenia
C. otrzymana w wyniku zmieszania próbek jednostkowych
D. o dokładnie znanym składzie
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 11

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,52 cm3
B. 2,50 cm3
C. 2,13 cm3
D. 2,15 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 12

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 KMnO4 → K2MnO4 + MnO2 + O2
B. CaCO3 → CaO + CO2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 to klasyczny przykład reakcji redoks, w której dochodzi do zmiany stopni utlenienia atomów. W tej reakcji mangan (Mn) w KMnO4 przechodzi z najwyższego stopnia utlenienia +7 do stopnia +6 w K2MnO4 oraz +4 w MnO2, a także wydziela się tlen (O2). Reakcje redoks są fundamentalnym procesem w chemii, wykorzystywanym w wielu zastosowaniach, od produkcji energii w ogniwach paliwowych po procesy elektrochemiczne w akumulatorach. Zrozumienie tych reakcji ma zastosowanie w praktyce, na przykład w analizie chemicznej, gdzie stosuje się reakcje redoks do oznaczania stężenia różnych substancji. Kluczowe w praktyce jest umiejętne rozpoznawanie reakcji utleniania i redukcji, co jest istotne w wielu gałęziach przemysłu, w tym w przemyśle farmaceutycznym i materiałowym, gdzie kontrola procesów redoks ma kluczowe znaczenie dla jakości produktów.

Pytanie 13

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
B. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
C. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
D. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. czas transportu próbki
B. typ środka transportowego
C. liczbę osób pobierających próbkę
D. nazwisko osoby, która pobrała próbkę
Podczas pobierania próbek środowiskowych ważne jest, aby odpowiednio je dokumentować, co pozwala na zachowanie wysokich standardów jakości oraz zgodności z regulacjami. Wskazanie rodzaju środka transportu, czasu trwania transportu czy ilości osób pobierających próbkę nie jest kluczowe dla samego procesu pobierania próbek. Rodzaj środka transportu i czas trwania transportu mogą wpływać na jakość próbki, ale ich dokumentacja nie jest wymagana na etapie oznaczania próbki. W praktyce, kluczowe informacje to te dotyczące samego poboru i osoby, która tę próbkę pobrała. Zapisanie tych danych jest szczególnie ważne w kontekście badania i analizy wyników, szczególnie w sytuacjach, gdy próbki mogą być poddawane dalszym badaniom lub audytom. Co więcej, skupienie się na ilości osób pobierających próbkę również nie jest istotne, ponieważ standardowe procedury dotyczące pobierania próbek często zakładają, że jedna osoba jest odpowiedzialna za ten proces, co zapewnia jednoznaczność i odpowiedzialność. Tego rodzaju nieporozumienia dotyczące dokumentacji próbek mogą prowadzić do utraty ważnych informacji, co w konsekwencji może wpłynąć na jakość badań i wiarygodność uzyskanych wyników.

Pytanie 19

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. czyszczenia szkła laboratoryjnego
B. odkamieniania urządzeń wodnych
C. roztwarzania różnych stopów
D. wytrącania trudno rozpuszczalnych soli w wodzie
Roztwór dichromianu(VI) potasu w stężonym kwasie siarkowym(VI) jest powszechnie stosowany w laboratoriach do mycia szkła laboratoryjnego, ponieważ jego właściwości chemiczne umożliwiają skuteczne usuwanie zanieczyszczeń organicznych oraz pozostałości po reakcjach chemicznych. Dichromian(VI) potasu działa jako silny utleniacz, co sprawia, że jest efektywny w eliminowaniu resztek organicznych, które mogą pozostać na powierzchni szkła. Praktyczne zastosowanie tego roztworu obejmuje czyszczenie probówek, kolb, oraz innych naczyń używanych w chemii analitycznej i syntetycznej. Ze względu na jego wysoką skuteczność, często jest stosowany przed przeprowadzaniem eksperymentów, aby zapewnić, że nie ma kontaminacji, która mogłaby wpłynąć na wyniki. W branży laboratoryjnej przestrzeganie standardów czystości i użycie odpowiednich reagentów jest kluczowe dla uzyskania wiarygodnych wyników, a roztwór dichromianu(VI) potasu w tym kontekście odgrywa istotną rolę. Ponadto, należy pamiętać o bezpieczeństwie pracy z tymi substancjami, ponieważ są one toksyczne i wymagają odpowiednich środków ochrony osobistej.

Pytanie 20

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. absorpcja
B. hydratacja
C. sedymentacja
D. dekantacja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 21

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. szkła sodowego
B. aluminium
C. polietylenu wysokiej gęstości (HDPE)
D. ceramiki
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 22

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(V) z azotu
B. kwasu azotowego(IV) z azotu
C. kwasu azotowego(II) z azotu
D. kwasu azotowego(III) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Chemikalia, dla których upłynął okres przydatności,

A. można je stosować, pod warunkiem że substancja pozostaje czysta
B. powinny być przechowywane w magazynie
C. można wykorzystać do końca opakowania
D. należy zutylizować z odpadami chemicznymi
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 26

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 30
B. 35
C. 12
D. 70
Odpowiedź 30 jest poprawna, ponieważ zgodnie z normą PN-EN 12579:2001, liczba miejsc pobierania próbek pierwotnych oblicza się według wzoru nsp = 0,5·√V, gdzie V to objętość jednostki badanej wyrażona w m3. Dla objętości V = 4900 m3, obliczamy: nsp = 0,5·√4900 = 0,5·70 = 35. Jednakże wartość nsp musi być zaokrąglona do liczby całkowitej oraz mieścić się w granicach 12 i 30. W związku z tym, mimo że obliczona wartość to 35, ze względu na górny limit, ostateczna wartość nsp wynosi 30. Takie podejście zapewnia odpowiednią reprezentatywność próbek, co jest kluczowe w analizach laboratoryjnych. W praktyce, stosowanie właściwej liczby próbek pozwala na dokładniejszą ocenę jakości nawozów oraz ich wpływu na glebę. Utrzymanie standardów w procesie pobierania próbek jest niezbędne do uzyskania wiarygodnych wyników, co jest szczególnie istotne w kontekście zrównoważonego rolnictwa i ochrony środowiska.

Pytanie 27

Jaką metodą nie można rozdzielać mieszanin?

A. krystalizacja
B. aeracja
C. ekstrakcja
D. chromatografia
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 28

Po połączeniu 50 cm3 wody z 50 cm3 alkoholu etylowego, objętość otrzymanej mieszanki jest poniżej 100 cm3. Zjawisko to jest spowodowane

A. adsorpcją
B. desorpcją
C. ekstrakcją
D. kontrakcją
Kontrakcja to zjawisko, które zachodzi w wyniku interakcji cząsteczek dwóch różnych cieczy, w tym przypadku wody i alkoholu etylowego. Gdy te dwa płyny są mieszane, cząsteczki alkoholu wchodzą w interakcję z cząsteczkami wody, co prowadzi do efektywnego zajmowania mniejszej objętości niż suma objętości poszczególnych cieczy. To zjawisko jest ściśle związane z różnicami w gęstości oraz strukturze cząsteczek, co skutkuje zmniejszeniem przestrzeni pomiędzy nimi. Kompaktowanie cząsteczek może być wykorzystane w praktyce podczas przygotowywania roztworów o określonym stężeniu, gdzie precyzyjne obliczenia objętości są kluczowe. Znajomość zjawiska kontrakcji jest istotna w przemyśle chemicznym i farmaceutycznym, gdzie odpowiednie proporcje składników zapewniają pożądane właściwości produktów. Na przykład, przy produkcji alkoholi, takich jak wino czy piwo, zrozumienie kontrakcji jest niezbędne do uzyskania optymalnych smaków i aromatów, co wpływa na jakość końcowego produktu.

Pytanie 29

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek potasu
B. kwas fluorowodorowy
C. glicerynę
D. wodorotlenek sodu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną i maskę tlenową.
B. Gumowe rękawice i maskę ochronną.
C. Odzież ochronną, rękawice i okulary ochronne.
D. Fartuch ochronny, rękawice i maskę tlenową.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Kolba ssawkowa
B. Rozdzielacz
C. Biureta gazowa
D. Kolba stożkowa
Rozdzielacz to w sumie mega ważne narzędzie w laboratorium, bo pozwala oddzielić różne fazy, a to kluczowe podczas ekstrakcji. Jego główna rola to separacja cieczy o różnych gęstościach, co jest istotne w chemii i biochemii. Ekstrakcja to tak naprawdę wydobywanie substancji z jednego medium do drugiego, a rozdzielacz, dzięki swojej budowie, umożliwia to w fajny sposób. Na przykład, gdy chcemy wyciągnąć związki organiczne z roztworów wodnych, to właśnie rozdzielacz pozwala nam na zebranie frakcji organicznej po oddzieleniu od wody. W praktyce często korzysta się z rozdzielaczy w kształcie lejka, co jest zgodne z zasadami dobrej praktyki w labie (GLP), bo zapewnia dokładność i powtarzalność wyników. Oczywiście, użycie rozdzielacza ma też swoje zasady dotyczące bezpieczeństwa i efektywności, więc to narzędzie jest naprawdę niezastąpione w laboratoriach chemicznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Kipp.
B. Engler.
C. Soxleth.
D. Thiel.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 40

Wskaż prawidłowo dobrany sposób kalibracji i zastosowanie szkła miarowego.

Nazwa naczyniaSposób kalibracjiZastosowanie
A.kolba miarowaExdo sporządzania roztworów mianowanych o określonej objętości
B.cylinder miarowyExdo sporządzania roztworów mianowanych o określonej objętości
C.pipeta MohraExdo odmierzania określonej objętości cieczy
D.biuretaIndo odmierzania określonej objętości cieczy

A. D.
B. C.
C. B.
D. A.
Pipeta Mohra jest narzędziem o wysokiej precyzji, które zostało zaprojektowane do kalibracji metodą Ex, co oznacza, że objętość cieczy odczytywana jest na zewnętrznej krawędzi menisku. To podejście jest kluczowe w laboratoriach chemicznych oraz biologicznych, gdzie precyzyjne pomiary objętości cieczy mają kluczowe znaczenie dla uzyskania wiarygodnych wyników badań. Pipety Mohra są szczególnie przydatne w reakcjach wymagających dokładności, takich jak przygotowywanie roztworów o znanej stężeniu lub w syntezach chemicznych. Standardy branżowe, takie jak ISO 8655, podkreślają znaczenie używania kalibracji zewnętrznej w pomiarach cieczy, aby zapewnić spójność i dokładność danych. Używając pipety Mohra, użytkownik powinien zwrócić uwagę na technikę odczytu, aby uniknąć błędów wynikających z parowania lub menisku, co może prowadzić do nieprecyzyjnych wyników. Dlatego odpowiedź C, wskazująca na prawidłowe zastosowanie pipety Mohra, jest zgodna z najlepszymi praktykami laboratoryjnymi.