Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 17 maja 2025 19:39
  • Data zakończenia: 17 maja 2025 19:56

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji oznaczono numery 1 i 4:

A. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
B. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
C. 1 - kolbę destylacyjną, 4 - ekstraktor
D. 1 - ekstraktor, 4 - chłodnicę zwrotną
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 2

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Niska wrażliwość na zmiany temperatury
B. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
C. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
D. Przepuszczalność promieniowania ultrafioletowego
Przepuszczalność promieniowania nadfioletowego, większa kruchość i mniejsza wytrzymałość na uderzenia w porównaniu do zwykłego szkła oraz mała wrażliwość na zmiany temperatury są cechami, które mogą mylnie kojarzyć się z naczyniami kwarcowymi. Naczynia te rzeczywiście przepuszczają promieniowanie UV, co czyni je odpowiednimi do zastosowań w biologii molekularnej i fotonice, jednak ich odporność na różnorodne substancje chemiczne nie jest niezrównana. W rzeczywistości, kruchość naczyń kwarcowych często prowadzi do ich uszkodzeń w wyniku uderzeń, co jest sprzeczne z założeniem, że są one bardziej wytrzymałe od szklanych naczyń zwykłych. Warto również zauważyć, że chociaż naczynia kwarcowe wykazują pewną odporność na zmiany temperatury, nie są one zupełnie odporne na nagłe ich zmiany. Typowe błędy myślowe w analizie tego zagadnienia mogą obejmować uproszczone wnioski o wytrzymałości materiałów na podstawie ich ogólnych właściwości fizycznych, bez uwzględnienia specyficznych reakcji chemicznych, które mogą występować w praktycznych zastosowaniach. Dlatego tak ważne jest, aby dokładnie rozumieć właściwości materiałów i ich zastosowanie w kontekście specyficznych warunków pracy.

Pytanie 3

Aby przygotować zestaw do filtracji, należy zebrać

A. biuretę, statyw metalowy, zlewkę
B. bagietkę, zlewkę, łapę metalową, statyw metalowy
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 4

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Chlorku sodu.
B. Wodorotlenku sodu.
C. Glukozy.
D. Stearynianu sodu.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 5

Czego się używa w produkcji z porcelany?

A. naczynia wagowe oraz krystalizatory
B. szkiełka zegarkowe oraz szalki Petriego
C. zlewki oraz bagietki
D. moździerze i parowniczki
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 6

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. chłodnica
B. płuczka
C. zestaw sit
D. rozdzielacz
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 7

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08

A. Ozonu.
B. Tlenku siarki(IV).
C. Amoniaku.
D. Chloroformu.
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 8

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. palność
B. reaktywność
C. rozpuszczalność
D. czystość
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 9

Najwyżej czyste odczynniki chemiczne to odczynniki

A. spektralnie czyste.
B. czyste do analizy.
C. czyste.
D. chemicznie czyste.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 10

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. wskaźnika uniwersalnego.
B. oranżu metylowego.
C. fenoloftaleiny.
D. lakmusu.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 11

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. obniżyć temperaturę próbek do 10oC
B. stosować opakowania nieprzezroczyste
C. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
D. dodać do próbek roztwór H3PO4 w celu zakwaszenia
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 12

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. Pb(NO3)2
B. AgF
C. NaCl
D. BaCl2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 13

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Użyć linijki do określenia objętości substancji.
B. Pominąć etap ważenia przy sporządzaniu roztworu.
C. Zastosować wagę analityczną o dokładności do 0,1 mg.
D. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 14

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Filtracja.
C. Destylacja.
D. Dekantacja.
Filtracja jest kluczową metodą rozdzielania układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Działa ona na zasadzie oddzielania cząstek stałych od gazów poprzez zastosowanie medium filtracyjnego, które może być wykonane z różnych materiałów, takich jak papier filtracyjny, tkaniny, czy nawet ceramika. Proces ten jest szeroko stosowany w laboratoriach chemicznych, przemysłowych systemach oczyszczania powietrza oraz w procesach związanych z produkcją leków, gdzie ważne jest usunięcie niepożądanych cząstek stałych. W praktyce, w laboratoriach chemicznych, filtracja może być stosowana do oczyszczania gazów z pyłów, co ma zastosowanie w badaniach dotyczących jakości powietrza. Zastosowanie filtracji zgodnie z uznawanymi standardami, takimi jak ISO 16890, pozwala na efektywne podejście do zarządzania jakością powietrza, co jest kluczowe w kontekście zdrowia publicznego i ochrony środowiska. Dodatkowo, filtracja umożliwia również precyzyjne kontrolowanie procesów produkcyjnych, co wpływa na jakość końcowego produktu.

Pytanie 15

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. czysty do analizy.
B. chemicznie czysty.
C. czysty.
D. techniczny.
Odpowiedź "czysty do analizy" jest poprawna, ponieważ odczynniki chemiczne o poziomie czystości wynoszącym 99,9-99,99% są klasyfikowane jako czyste do analizy, co oznacza, że spełniają wysokie standardy czystości wymagane do prowadzenia precyzyjnych analiz chemicznych. Takie substancje są niezbędne w laboratoriach analitycznych, gdzie dokładność wyników jest kluczowa. Przykłady zastosowania obejmują analizę substancji aktywnych w farmaceutyce, gdzie nawet niewielkie zanieczyszczenia mogą wpłynąć na skuteczność leku. Zgodnie z normami, takimi jak ISO 17025, laboratoria muszą korzystać z odczynników o określonych parametrach czystości, aby zapewnić wiarygodność i powtarzalność wyników. Odczynniki czyste do analizy są również stosowane w badaniach środowiskowych, gdzie precyzyjne pomiary są kluczowe dla oceny jakości wody czy powietrza. Wybór odpowiednich odczynników gwarantuje, że wyniki są nie tylko dokładne, ale także zgodne z regulacjami prawnymi i standardami jakości.

Pytanie 16

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną, próżniową oraz hydrantową
B. elektryczną oraz chłodniczą
C. elektryczną i wodociągowo-kanalizacyjną
D. wodociągową i grzewczą
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 17

Substancje kancerogenne to

A. enzymatyczne
B. uczulające
C. rakotwórcze
D. mutagenne
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 18

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. rozpuszczanie
B. krystalizacja
C. roztwarzanie
D. ekstrakcja
Roztwarzanie jest zjawiskiem chemicznym, które polega na rozpuszczaniu substancji stałej w rozpuszczalniku, co prowadzi do utworzenia roztworu. Proces ten jest istotny w wielu dziedzinach, w tym w chemii analitycznej, farmakologii czy technologii żywności. Przykładem może być rozpuszczanie soli w wodzie, które ilustruje, jak jony sodu i chlorkowe oddzielają się i przemieszczają w rozpuszczalniku. Roztwarzanie jest kluczowe w produkcji leków, gdzie substancje czynne muszą być odpowiednio rozpuszczone, aby mogły być wchłaniane przez organizm. Przykładowo, w farmacjach stosuje się różne metody roztwarzania, aby zapewnić właściwe stężenie substancji aktywnej. Zgodnie z dobrymi praktykami w laboratoriach, kontrola warunków takich jak temperatura oraz pH jest niezbędna, aby osiągnąć optymalne rezultaty. Warto również zaznaczyć, że roztwarzanie może być przyspieszane poprzez mieszanie, co zwiększa kontakt pomiędzy rozpuszczalnikiem a substancją stałą, co z kolei pozwala na efektywniejszy proces rozpuszczania.

Pytanie 19

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. ługowanie
B. krystalizację
C. resublimację
D. sublimację
Odpowiedź "sublimację" jest prawidłowa, ponieważ opisany proces polega na bezpośredniej przemianie naftalenu z fazy stałej w fazę gazową bez przechodzenia przez stan ciekły. W opisanym eksperymencie, po łagodnym ogrzaniu parownicy, naftalen sublimuje, a jego pary przechodzą przez otwory w bibule, a następnie kondensują na ściankach lejka szklanego. Sublimacja jest wykorzystywana w przemyśle chemicznym do oczyszczania substancji o niskich temperaturach topnienia oraz do separacji związków chemicznych. Przykładem zastosowania sublimacji w praktyce jest oczyszczanie substancji organicznych, takich jak jod czy naftalen, gdzie proces ten pozwala na uzyskanie czystszych produktów. W kontekście standardów laboratoryjnych, sublimacja jest uznawana za metodę o wysokiej skuteczności, zapewniającą minimalne straty materiałowe i pozwalającą na zachowanie właściwości chemicznych oczyszczanej substancji.

Pytanie 20

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
B. BaCl2 + H2SO4 → BaSO4 + 2HCl
C. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
D. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
Odpowiedź Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl- jest poprawna, ponieważ odzwierciedla rzeczywisty proces reakcji jonowej w przypadku otrzymywania siarczanu(VI) baru. W tej reakcji jony baru (Ba2+) reagują z jonami siarczanowymi (SO42-) oraz jonami wodorowymi (H+) w obecności chloru (Cl-). Produktami reakcji są osad siarczanu(VI) baru (BaSO4) oraz jony H+ i Cl-, co wskazuje na to, że chlor, mimo że nie jest bezpośrednio zaangażowany w tworzenie osadu, pozostaje w roztworze. Takie podejście jest zgodne z zasadami zapisu reakcji w formie jonowej, gdzie pokazujemy tylko te jony, które biorą udział w tworzeniu produktów, eliminując jony, które pozostają niezmienione w roztworze. W praktycznych zastosowaniach, reakcje takie są ważne w przemyśle chemicznym, zwłaszcza w procesach oczyszczania wody, gdzie siarczan(VI) baru jest wykorzystywany do usuwania zanieczyszczeń. Przykładem może być wykorzystanie BaSO4 jako środek kontrastowy w diagnostyce medycznej, co potwierdza jego znaczenie w zastosowaniach technicznych.

Pytanie 21

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. czerwonym
B. niebieskim
C. żółtym
D. jasnozielonym
Butle gazowe zawierające wodór są oznaczane kolorem czerwonym zgodnie z międzynarodowymi standardami dotyczącymi oznakowania gazów. Kolor ten ma na celu poprawne identyfikowanie rodzaju gazu oraz zwiększenie bezpieczeństwa podczas jego transportu i przechowywania. W przypadku wodoru, który jest gazem łatwopalnym i wybuchowym, prawidłowe oznakowanie jest kluczowe dla minimalizacji ryzyka wypadków. Przykładem zastosowania tej wiedzy jest praca w przemyśle chemicznym oraz podczas transportu gazów, gdzie pracownicy muszą być w stanie szybko rozpoznać rodzaj gazu, z którym mają do czynienia. W praktyce, znajomość kolorów butli pozwala na skuteczne unikanie niebezpieczeństw, takich jak nieodpowiednie łączenie gazów lub ich niewłaściwe przechowywanie. Dobre praktyki w zakresie zarządzania gazami obejmują również regularne szkolenia dla pracowników oraz stosowanie systemów monitorowania, co zwiększa bezpieczeństwo operacji związanych z gazami niebezpiecznymi.

Pytanie 22

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kwasowe
B. kalibracyjne
C. zasadowe
D. buforowe
Wybór zasadowych lub kwasowych roztworów jako opcji kalibracyjnych jest błędny, ponieważ nie mają one zdolności do stabilizowania wartości pH. Roztwory zasadowe mogą podnieść pH w próbce, co prowadzi do fałszywych odczytów, a roztwory kwasowe mogą je obniżyć, co również zniekształca wyniki. Kalibracja pehametru polega na wprowadzeniu znanych wartości pH, co nie jest możliwe przy użyciu roztworów, które zmieniają pH w trakcie pomiaru. Używanie roztworów kalibracyjnych, choć brzmi sensownie, jest mylące, ponieważ kalibracyjne odnoszą się do roztworów buforowych, które są właściwymi substancjami do kalibracji pehametrów. Zrozumienie, dlaczego nie można stosować zasadowych lub kwasowych roztworów, wymaga znajomości mechanizmu działania buforów, które działają na zasadzie równowagi chemicznej, co nie jest typowe dla roztworów o skrajnych wartościach pH. Typowym błędem myślowym jest mylenie pojęć kalibracji, pomiaru i stabilizacji pH. Użycie niewłaściwych substancji w tym kontekście może prowadzić do poważnych konsekwencji w analizach chemicznych, gdzie precyzyjne wartości są kluczowe dla uzyskania wiarygodnych wyników. W kontekście standardów laboratoryjnych, przestrzeganie zasad dotyczących kalibracji pehametrów jest podstawą zapewnienia jakości w badaniach analitycznych.

Pytanie 23

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu benzenokarboksylowego
B. naważkę kwasu mrówkowego
C. odmierzoną porcję roztworu kwasu octowego
D. odmierzoną ilość kwasu azotowego(V)
Wybór innych kwasów, takich jak kwas mrówkowy, kwas azotowy(V) czy kwas octowy, nie jest odpowiedni do ustalania miana roztworu wodorotlenku sodu z kilku powodów. Kwas mrówkowy, mimo że jest kwasem organicznym, charakteryzuje się innymi właściwościami, które mogą prowadzić do błędnych wyników podczas miareczkowania ze względu na jego zmienność i trudności w ustaleniu punktu końcowego. Kwas azotowy(V) jest silnym kwasem nieorganicznych, którego użycie do kalibracji roztworu zasadowego może powodować nieprawidłowości w wynikach z uwagi na reakcje redoks, które mogą zachodzić w trakcie miareczkowania. Kwas octowy, z kolei, jest słabym kwasem, co sprawia, że jego możliwości w zakresie określania miana są ograniczone, ponieważ reakcje z wodorotlenkiem sodu mogą nie być wystarczająco wyraźne do precyzyjnego ustalenia stężenia roztworu. Właściwy dobór reagentów do miareczkowania jest kluczowy, aby uniknąć błędów systematycznych, które mogą wpłynąć na dalsze analizy jakościowe i ilościowe. Dlatego tak istotne jest, aby w procesie kalibracyjnym stosować substancje o stabilnych właściwościach chemicznych, co w przypadku kwasu benzenokarboksylowego jest zapewnione.

Pytanie 24

Reagenty o najwyższej czystości to reagenty

A. czyste do badań.
B. chemicznie czyste.
C. czyste.
D. spektralnie czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 25

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi chemicznie
B. czystymi do badań
C. czystymi
D. czystymi spektralnie
Wybór innych odpowiedzi może wynikać z błędnego zrozumienia terminów związanych z czystością chemiczną. Odpowiedź 'spektralnie czyste' odnosi się specjalnie do odczynników, które muszą spełniać dodatkowe wymogi dotyczące czystości w kontekście analiz spektroskopowych. W takim przypadku czystość nie wystarcza, aby zapewnić dokładność wyników, ponieważ zanieczyszczenia mogą wpływać na widmo emitowane przez próbkę, co jest kluczowe w spektroskopii. Natomiast odpowiedź 'czyste do analiz' sugeruje, że odczynniki te są przygotowane do konkretnego zastosowania analitycznego, ale niekoniecznie spełniają wymagania dotyczące czystości chemicznej. Z kolei odpowiedź 'chemicznie czyste' jest zbyt ogólna, ponieważ nie określa konkretnego zakresu czystości, który jest szczególnie istotny w analizach laboratoryjnych. Często w praktyce laboratoria posługują się wytycznymi dotyczącymi czystości, które mogą być różne w zależności od zastosowania, a nieprzestrzeganie tych standardów może prowadzić do fałszywych wyników i nieefektywności badań. Dlatego znajomość terminologii i standardów jest kluczowa w pracy laboratoryjnej.

Pytanie 26

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w nafcie
B. w benzynie
C. w benzenie
D. w wodzie
Fosfor biały jest substancją niezwykle reaktywną, a jego przechowywanie w wodzie jest kluczowe dla zapewnienia bezpieczeństwa. Woda działa jako medium, które ogranicza dostęp tlenu do fosforu, minimalizując ryzyko jego utlenienia i zapłonu. W przypadku kontaktu z powietrzem, fosfor biały może spontanicznie się zapalić, co czyni go niebezpiecznym w standardowych warunkach przechowywania. Woda nie tylko chroni przed reakcjami chemicznymi, ale także zapewnia fizyczną barierę, która zapobiega rozprzestrzenieniu się ewentualnych dymów fosforowych. Przykładem zastosowania tej metody przechowywania jest przemysł chemiczny, gdzie fosfor biały jest używany w procesach produkcji związków chemicznych, a odpowiednie metody przechowywania są zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration). Dobrą praktyką w laboratoriach jest także oznaczanie pojemników z fosforem białym, aby zminimalizować ryzyko przypadkowego uwolnienia substancji do atmosfery.

Pytanie 27

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,745 g
B. 22,740 g
C. 27,745 g
D. 27,740 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 28

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. przyspieszają proces wrzenia cieczy
C. umożliwiają równomierne wrzenie cieczy
D. obniżają temperaturę wrzenia cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 29

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
B. Pobranie nadmiernej liczby próbek pierwotnych
C. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
D. Transport próbki mleka w temperaturze 30°C
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 30

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 36,5 g roztworu kwasu solnego o stężeniu 38%
B. 9,125 g roztworu kwasu solnego o stężeniu 38%
C. 10 g roztworu kwasu solnego o stężeniu 38%
D. 24,013 g roztworu kwasu solnego o stężeniu 38%
Aby zobojętnić 10 g wodorotlenku sodu (NaOH), najpierw musimy obliczyć liczbę moli NaOH. Liczba moli obliczana jest ze wzoru n = m/M, gdzie m to masa, a M to masa molowa substancji. Masy molowe NaOH wynoszą 40 g/mol, więc liczba moli NaOH to 10 g / 40 g/mol = 0,25 mol. Reakcja zobojętniania NaOH z kwasem solnym (HCl) jest jednoczynnikowa, co oznacza, że jeden mol NaOH reaguje z jednym molem HCl. Zatem potrzebujemy 0,25 mola HCl do zobojętnienia 0,25 mola NaOH. Masy molowe HCl wynoszą 36,5 g/mol, więc masa HCl potrzebna do reakcji wynosi 0,25 mol * 36,5 g/mol = 9,125 g. Roztwór kwasu solnego o stężeniu 38% oznacza, że w 100 g roztworu znajduje się 38 g HCl. Aby obliczyć masę roztworu potrzebnego do uzyskania 9,125 g HCl, można skorzystać ze wzoru: masa roztworu = masa HCl / (stężenie HCl/100) = 9,125 g / (38/100) = 24,013 g. Tak więc do zobojętnienia 10 g NaOH potrzeba 24,013 g roztworu kwasu solnego o stężeniu 38%. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne dawkowanie reagentów jest niezbędne dla uzyskania dokładnych wyników.

Pytanie 31

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,6
B. 0,8
C. 1,0
D. 0,4
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 32

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 2,5 g
B. 0,25 g
C. 25 g
D. 250 g
Aby obliczyć ilość NaCl w 250 g 10% roztworu, należy zastosować wzór na stężenie procentowe. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g substancji rozpuszczonej. Dla 250 g roztworu, proporcja ta jest taka sama, co można obliczyć, stosując przeliczenie: (10 g / 100 g) * 250 g = 25 g NaCl. W praktyce, takie obliczenia są niezwykle istotne w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania odpowiednich reakcji chemicznych. Zrozumienie stężenia roztworów pozwala na ich prawidłowe stosowanie w różnych procedurach, takich jak przygotowanie leków, analiza chemiczna czy też wytwarzanie materiałów. Warto również znać zasady dotyczące przechowywania oraz rozcieńczania roztworów, co jest zgodne z najlepszymi praktykami laboratoryjnymi.

Pytanie 33

W karcie charakterystyki substancji znajduje się piktogram, którym powinna być oznakowana substancja

Ilustracja do pytania
A. redukująca.
B. łatwopalna.
C. utleniająca.
D. wybuchowa.
Odpowiedź 'łatwopalna' jest prawidłowa, ponieważ piktogram przedstawiony na zdjęciu jest symbolem substancji łatwopalnych. W ramach systemu klasyfikacji substancji chemicznych zgodnie z Rozporządzeniem CLP (Classification, Labelling and Packaging) oznakowanie to jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy. Łatwopalne substancje są materiałami, które mogą łatwo ulegać zapłonowi w wyniku kontaktu z źródłem ognia lub cieplnym. Przykłady takich substancji obejmują rozpuszczalniki organiczne, niektóre gazy oraz materiały łatwopalne, takie jak alkohol czy benzyna. W praktyce oznaczenie substancji łatwopalnych pozwala pracownikom na podjęcie odpowiednich środków ostrożności, takich jak unikanie otwartego ognia, przechowywanie w odpowiednich warunkach oraz używanie osobistych środków ochrony. Oznakowanie substancji chemicznych według standardów CLP jest kluczowe dla ochrony zdrowia, bezpieczeństwa i środowiska, a także dla spełnienia wymogów prawnych. Właściwe zrozumienie piktogramów jest istotne w każdym miejscu, gdzie przetwarzane są substancje chemiczne.

Pytanie 34

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. odparowanie
B. dekantacja
C. krystalizacja
D. sedymentacja
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 35

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
B. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
C. kolby miarowej, tygla, pipety, naczynka wagowego.
D. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 36

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 3:5
B. 2:3
C. 3:2
D. 5:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 37

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 0,200 mol/dm3
B. 2,000 mol/dm3
C. 0,020 mol/dm3
D. 0,002 mol/dm3
Aby obliczyć stężenie molowe sporządzonego roztworu wodorotlenku sodu (NaOH), należy najpierw obliczyć liczbę moli substancji. Masa wodorotlenku sodu wynosi 0,0400 g, a jego masa molowa to 40,0 g/mol. Liczba moli NaOH wynosi zatem: n = m/M = 0,0400 g / 40,0 g/mol = 0,001 mol. Roztwór został rozcieńczony do objętości 500 cm³, co odpowiada 0,500 dm³. Stężenie molowe (C) obliczamy ze wzoru: C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Wstawiając wartości, otrzymujemy: C = 0,001 mol / 0,500 dm³ = 0,002 mol/dm³. Takie obliczenia są fundamentalne w chemii analitycznej i stosowane są w laboratoriach do przygotowywania roztworów o znanym stężeniu. Znajomość stężeń molowych jest kluczowa w reakcjach chemicznych, szczególnie w kontekście analizy ilościowej oraz w procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów ma kluczowe znaczenie dla jakości produktów końcowych.

Pytanie 38

Średnia masa wody wypływająca z pipety o deklarowanej pojemności 25 cm3, w temperaturze 25°C wynosi 24,80 g. Korzystając z danych zamieszczonych w tabeli wskaż wartość poprawki kalibracyjnej dla tej pipety.

Masa wody zajmującej objętość 1 dm3 w zależności od temperatury pomiaru
Temperatura
°C
Masa wody
g
20997,17
21997,00
22996,80
23996,59
24996,38
25996,16
26995,93
27995,69
28995,45
29995,18
30994,92

A. 0,10 ml
B. 0,25 ml
C. 0,18 ml
D. 0,16 ml
Dobra robota! Odpowiedź 0,10 ml jest jak najbardziej na miejscu i świetnie pokazuje, jakie są zasady kalibracji pipet. Jak masz pipetę o pojemności 25 cm³, to różnice między tym, co teoretycznie powinno być, a tym, co naprawdę dostajesz, są mega ważne dla precyzyjnych pomiarów. W tym przypadku pipeta faktycznie wypuszcza 0,104 g wody mniej, co daje nam tę poprawkę kalibracyjną 0,10 ml. W labie, kiedy używasz pipet do dozowania różnych substancji, musisz to uwzględnić, żeby wyniki były dokładne. W każdym laboratorium analitycznym kalibracja to standard. Bo każda nawet mała różnica w objętości może zmienić stężenie roztworu, a potem to prowadzi do błędnych wniosków. Dlatego fajnie jest regularnie sprawdzać i kalibrować pipety, żeby mieć pewność, że wyniki są wiarygodne i można je powtarzać.

Pytanie 39

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wlew.
B. zimno.
C. gorąco.
D. wylew.
Wybór odpowiedzi 'wlew' jest błędny, ponieważ w kontekście kalibracji pipet nie odnosi się do żadnej standardowej praktyki. Termin 'wlew' sugeruje czynność, a nie precyzyjną miarę objętości, co prowadzi do mylnego wniosku. Podobnie, odpowiedzi 'zimno' i 'gorąco' są również niepoprawne, gdyż odnoszą się do temperatur, które nie mają związku z kalibracją pipet. Kalibracja dotyczy objętości, a nie temperatury cieczy dozowanej przez pipecie. Błąd w myśleniu polega na tym, że użytkownicy mogą nie zrozumieć podstawowych koncepcji związanych z pomiarem i dozowaniem cieczy. W rzeczywistości, pipety są kalibrowane w oparciu o specyfikacje dotyczące objętości, co jest kluczowe dla zapewnienia dokładności i precyzji w pomiarach laboratoryjnych. Nieprawidłowe interpretacje takich terminów mogą prowadzić do poważnych błędów w badaniach, co wpływa na wiarygodność wyników. Dlatego istotne jest, aby pracownicy laboratoriów dobrze rozumieli zasady kalibracji i jej wpływ na jakość rezultatu, a także stosowali się do wytycznych podanych w normach branżowych.

Pytanie 40

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w ustaleniu się kontrakcji objętości
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. opóźnieniem w osiągnięciu równowagi dysocjacji
D. koniecznością dokładnego wymieszania roztworu
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.