Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 19:31
  • Data zakończenia: 24 maja 2025 19:40

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Prostowniki.
B. Flip-flopy.
C. Generatory.
D. Stabilizatory.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 2

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HLP, HFA, HTG
B. HPG, HTG, HT
C. HFA, HFC, HFD
D. HV, HLP, HLPD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 3

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
B. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
C. powiększa ryzyko związane z możliwością rozerwania zbiornika
D. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
Montaż dodatkowych zaworów bezpieczeństwa w instalacji zasilającej zbiornik ciśnieniowy to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo. Te zawory pomagają regulować ciśnienie wewnętrzne, co jest kluczowe, żeby nie doszło do rozerwania zbiornika. W praktyce, dobrze jest stosować zawory zgodnie z międzynarodowymi normami, na przykład ASME czy EN. Wyobraź sobie sytuację w zakładzie przemysłowym, gdzie pompy generują duże ciśnienie; wtedy zawory mogą odprowadzić nadmiar medium, co jest mega przydatne. No i oczywiście pamiętaj o regularnej konserwacji tych zaworów – to też wpływa na bezpieczeństwo całej operacji. Odpowiednio dobrane i zainstalowane zawory naprawdę mogą zmniejszyć ryzyko wypadków, co jest korzystne zarówno dla ludzi, jak i dla samej infrastruktury.

Pytanie 4

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. akcelerometry
B. galwanometry
C. rotametry
D. tensometry
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 5

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Generator i oscyloskop
B. Częstościomierz i miernik uniwersalny
C. Amperomierz i oscyloskop
D. Generator fali stojącej oraz woltomierz
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.

Pytanie 6

Jakie metody wykorzystuje się do produkcji prętów?

A. walcowanie
B. wytłaczanie
C. odlewanie
D. tłoczenie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 7

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Prawidłowa odpowiedź wskazuje na to, że pracownik obsługujący urządzenie elektryczne prądu stałego o napięciu znamionowym 60 V w III klasie ochronności może odczuwać skutki przepływu prądu podczas kontaktu z nieizolowanymi elementami czynnych. W kontekście III klasy ochronności urządzeń elektrycznych, oznacza to, że sprzęt jest zabezpieczony w taki sposób, aby nie stwarzał zagrożenia dla użytkownika. Urządzenia te są projektowane z dodatkowymi środkami ochrony, na przykład przez zastosowanie izolacji oraz zastosowanie materiałów, które nie przewodzą prądu. Niemniej jednak, w sytuacji, gdy pracownik ma kontakt z nieizolowanymi elementami, takich jak przewody lub terminale, ryzyko odczuwalnych skutków przepływu prądu istnieje. Ważne jest, aby przestrzegać norm i dobrych praktyk, takich jak zapewnienie odpowiednich procedur szkoleniowych oraz stosowanie osłon ochronnych, aby minimalizować ryzyko porażenia prądem. W praktyce oznacza to, że zawsze należy zachować ostrożność i stosować odpowiednie środki ochrony osobistej, takie jak rękawice izolacyjne oraz narzędzia z izolowanymi uchwytami.

Pytanie 8

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
B. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
C. nastąpiła awaria wewnętrzna sterownika
D. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 9

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Rozdzielacz suwakowy
B. Zawór przelewowy
C. Regulator przepływu
D. Zawór dławiąco-zwrotny
Wybór rozdzielacza suwakowego jako elementu regulacyjnego w układzie hydraulicznym nie jest właściwy w kontekście utrzymania stałej prędkości obrotowej silnika hydraulicznego. Rozdzielacze suwakowe służą głównie do kierunkowego sterowania przepływem cieczy i umożliwiają zmianę kierunku pracy siłowników. Ich funkcjonalność koncentruje się na rozdzielaniu strumienia cieczy do różnych odbiorników, co nie pozwala na stabilizację prędkości w warunkach zmiennego obciążenia. Z kolei zawór dławiąco-zwrotny, mimo że może regulować przepływ, nie zapewnia stałej prędkości obrotowej, ponieważ jego działanie opiera się na dławieniu przepływu, co może prowadzić do wahań prędkości w zależności od obciążenia. Warto również zauważyć, że zawór przelewowy, który służy do ochrony układu przed nadmiernym ciśnieniem, nie ma wpływu na stabilizację prędkości obrotowej silnika, a jego głównym zadaniem jest odprowadzanie nadmiaru cieczy do zbiornika. Takie myślenie prowadzi do typowego błędu, w którym myli się funkcję regulacyjną z zabezpieczającą lub kierunkową, co może skutkować nieefektywnym działaniem układu hydraulicznego oraz zwiększonym ryzykiem uszkodzeń. Aby zrozumieć istotę regulacji przepływu w systemach hydraulicznych, ważne jest, aby analizować każdy z elementów pod kątem ich przeznaczenia i wpływu na funkcjonowanie całego układu.

Pytanie 10

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. oblać dłoń wodą utlenioną i nałożyć opatrunek
B. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 11

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Rękawice ochronne
B. Buty ochronne
C. Odzież ochronna
D. Okulary ochronne
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 12

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. przełącznik obiegu
B. zawór dławiąco zwrotny
C. zawór podwójnego sygnału
D. zawór szybkiego spustu
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 13

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. różnicowy.
B. dwustronnej pracy.
C. jednostronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 14

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. redukcji tętnień
C. zmiany przebiegu dwupulsowego na jednopulsowy
D. zmniejszenia składowej stałej
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 15

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Zapewniają ustawiony, stały spadek ciśnienia
B. Redukują nagłe skoki ciśnienia
C. Utrzymują ustalony poziom ciśnienia
D. Ograniczają ciśnienie do ustalonego poziomu
Wybór odpowiedzi, która wskazuje na inne funkcje zaworów przelewowych, może prowadzić do nieporozumień w zakresie ich rzeczywistego zastosowania. Zmniejszanie gwałtownych impulsów ciśnienia nie jest zasadniczą funkcją zaworów przelewowych. Takie zadania często są realizowane przez inne elementy układu, takie jak tłumiki czy akumulatory hydrauliczne, które są zaprojektowane do absorpcji szczytowych wartości ciśnienia. Utrzymywanie zadanego, stałego spadku ciśnienia jest również nieprawidłowym podejściem, ponieważ zawory przelewowe nie są przeznaczone do regulowania różnicy ciśnień, lecz do ochrony przed nadmiernym wzrostem ciśnienia. Innym błędnym przekonaniem jest to, że zawory przelewowe po prostu ograniczają ciśnienie do określonego poziomu; w rzeczywistości ich działanie jest bardziej złożone i polega na zapewnieniu stabilności ciśnienia w układzie poprzez odprowadzanie nadmiaru płynu. Mylne interpretacje dotyczące funkcji zaworów przelewowych mogą skutkować nieprawidłowym doborem komponentów w systemach hydraulicznych, co w konsekwencji prowadzi do awarii i zwiększonych kosztów eksploatacyjnych. Dlatego kluczowe jest zrozumienie ich rzeczywistej roli w utrzymywaniu stabilności ciśnienia, co jest niezbędne dla prawidłowego funkcjonowania całego układu hydraulicznego.

Pytanie 16

Przy wykonywaniu lutowania elementów dyskretnych na płytce PCB powinno się nosić

A. fartuch ochronny
B. rękawice odporne na wysoką temperaturę
C. obuwie ochronne z gumową podeszwą
D. okulary ochronne
Zakładanie rękawic żaroodpornych, butów ochronnych na podeszwie gumowej lub okularów ochronnych, choć w niektórych sytuacjach ma swoje uzasadnienie, nie zapewnia kompleksowej ochrony, jaką oferuje fartuch ochronny. Rękawice żaroodporne są przeznaczone do ochrony rąk przed wysoką temperaturą, co w kontekście lutowania nie jest kluczowe, ponieważ lutowanie wiąże się z precyzyjną pracą narzędziami. Rękawice mogą ograniczać czucie i precyzję, co w przypadku lutowania elementów dyskretnych jest niezwykle istotne. Buty ochronne na podeszwie gumowej mogą chronić stopy przed upadkiem ciężkich przedmiotów, ale nie oferują ochrony odzieży, co czyni je niewystarczającymi w tej konkretnej sytuacji. Okulary ochronne są istotne w kontekście ochrony oczu, lecz nie chronią reszty ciała, co jest kluczowe w przypadku pracy z gorącymi materiałami. Kluczowym błędem w myśleniu jest pomijanie znaczenia kompleksowej ochrony odzieżowej, która powinna obejmować nie tylko konkretne części ciała, ale także całe ubranie, które minimalizuje ryzyko kontaktu z niebezpiecznymi substancjami. W kontekście standardów bezpieczeństwa, takie podejście do ochrony nie spełnia wymagań dotyczących odzieży roboczej określonych w normach BHP.

Pytanie 17

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Prądnica tachometryczna
B. Mostek tensometryczny
C. Potencjometr obrotowy
D. Selsyn trygonometryczny
Prądnica tachometryczna to fajne urządzenie, które służy do mierzenia prędkości obrotowej wału silnika. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że kiedy wał się kręci, w uzwojeniach prądnicy powstaje prąd, który jest proporcjonalny do prędkości tego obrotu. To bardzo ważne w automatyce i regulacji, bo precyzyjne pomiary prędkości są kluczowe, żeby maszyny działały stabilnie i efektywnie. Na przykład w autach, prądnice tachometryczne pomagają kontrolować prędkość silnika, co z kolei wpływa na zużycie paliwa i emisję spalin. Co więcej, te urządzenia są zgodne z normami europejskimi, jak IEC 60034, więc można na nie liczyć. W praktyce, wdrożenie prądnic tachometrycznych w systemach pomiarowych umożliwia uzyskanie wysokiej dokładności i szybkiej reakcji, co jest super ważne w nowoczesnym przemyśle.

Pytanie 18

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
C. pozostawić je obok kontenera na śmieci
D. wrzucić je do kosza na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 19

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. wartości częstotliwości napięcia zasilającego
B. wartości skutecznej napięcia zasilania stojana
C. kolejności faz
D. liczby par biegunów
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 20

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. membrana
B. zawór dławiący
C. tłumik
D. magnes stały
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o niskich częstotliwościach.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
D. przepuszcza sygnały o niskich częstotliwościach.
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 22

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Żółtym
B. Czarnym
C. Niebieskim
D. Brązowym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 23

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. rękawic dielektrycznych
C. okularów ochronnych
D. ochronników słuchu
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 24

Jaką rolę pełni multiplekser?

A. Kodowanie sygnałów na wejściach
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Porównywanie sygnałów podawanych na wejścia
D. Przesyłanie danych z jednego wejścia do wybranego wyjścia
Często zdarza się, że mylące jest zrozumienie funkcji multipleksera, co prowadzi do nieprawidłowych odpowiedzi. Na przykład, odpowiedź sugerująca, że multiplekser porównuje sygnały wejściowe, jest błędna, ponieważ jego główną rolą nie jest analiza, lecz selekcja i przesyłanie danych. Funkcje takie, jak porównywanie sygnałów, są bardziej związane z komponentami takimi jak komparatory, które mają za zadanie analizować różnice pomiędzy dwoma sygnałami. Inną mylną koncepcją jest myślenie, że multiplekser koduje sygnały wejściowe. Kodowanie sygnałów to proces, który często wiąże się z transformacją danych w formę bardziej zrozumiałą dla systemów, a nie z ich przesyłaniem na wybrane wyjście. Takie zadania realizują inne układy, takie jak enkodery. Niezrozumienie roli multipleksera może prowadzić do błędów w projektowaniu systemów cyfrowych, gdzie wybór niewłaściwych komponentów może wpłynąć na wydajność i funkcjonalność całego systemu. Warto zrozumieć, że multiplekser pełni kluczową funkcję w architekturze cyfrowej, a jego prawidłowe użycie ma ogromne znaczenie w kontekście efektywności przesyłania informacji oraz organizacji danych w skomplikowanych systemach telekomunikacyjnych.

Pytanie 25

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe wspomaganie wytwarzania
B. Komputerowe wspomaganie projektowania
C. Komputerowe przygotowanie produkcji
D. Komputerowa kontrola jakości
Wybór niepoprawnych określeń wynikł z nieporozumienia dotyczącego terminologii związanej z projektowaniem i produkcją. 'Komputerowe wspomaganie projektowania' (CAD) odnosi się do oprogramowania używanego do tworzenia i modyfikacji modeli oraz rysunków inżynieryjnych. Chociaż CAD odgrywa kluczową rolę w procesie projektowania, nie jest to skrót związany z wytwarzaniem. 'Komputerowa kontrola jakości' odnosi się do procesów związanych z zapewnieniem jakości produktów, co jest bardzo ważnym aspektem w każdym zakładzie produkcyjnym, ale nie jest bezpośrednio związane ze wspomaganiem samego procesu wytwarzania. Z kolei 'komputerowe przygotowanie produkcji' to termin, który może odnosić się do różnych działań związanych z planowaniem i organizowaniem produkcji, ale nie skupia się bezpośrednio na aspekcie produkcyjnym, który jest kluczowy w CAM. Typowym błędem myślowym jest pomieszanie funkcji projektowania oraz wytwarzania, co prowadzi do mylnego utożsamiania tych dwóch obszarów. Ważne jest, aby zrozumieć, że CAM koncentruje się na automatyzacji procesów produkcyjnych, a nie na fazie projektowania czy kontroli jakości.

Pytanie 26

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 45°
B. 90°
C. -90°
D. 0°
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 27

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HL
B. HLP
C. H
D. HVLP
Odpowiedź HLP jest jak najbardziej na miejscu, bo chodzi tu o oleje mineralne, które mają różne dodatki, żeby lepiej działały w kwestii antykorozyjnej i smarności. HLP to oznaczenie, które mówi, że olej jest stworzony do hydrauliki, a w jego składzie znajdują się dodatki przeciwdziałające utlenianiu i zużyciu. Dzięki temu świetnie sprawdza się w systemach hydraulicznych, gdzie potrzebujemy czegoś naprawdę wydajnego. Na przykład, oleje HLP są często używane w maszynach przemysłowych czy hydraulice w pojazdach, bo są niezawodne i dobrze chronią przed korozją. W praktyce, te oleje trzymają się norm takich jak DIN 51524, co potwierdza ich jakość oraz odpowiednie właściwości. Wybierając olej HLP, zyskujemy nie tylko dłuższą żywotność maszyn, ale też mniejsze koszty eksploatacji i bardziej efektywną pracę.

Pytanie 28

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. częstotliwości
B. zmianę fazy impulsu
C. amplitudy impulsu
D. zmianę szerokości impulsu
Twoja odpowiedź na temat zmiany szerokości impulsu jest naprawdę na miejscu! Pulse Width Modulation, czyli PWM, to świetna technika, gdzie szerokość impulsu sygnału zmienia się, żeby lepiej sterować mocą dostarczaną do różnych urządzeń. W przypadku PWM okres sygnału zostaje taki sam, a to, co się zmienia, to właśnie szerokość impulsu, co bezpośrednio wpływa na średnią moc. Dzięki temu można precyzyjnie kontrolować na przykład silniki, regulować jasność diod LED, albo przekształcać sygnały cyfrowe w analogowe. Weźmy przykładowo regulację prędkości silnika DC – zmieniając szerokość impulsu, można fajnie ustawić obroty silnika. To naprawdę przydatne, bo PWM pozwala efektywnie wykorzystywać energię i ograniczać straty w systemach elektronicznych, co jest mega ważne w inżynierii.

Pytanie 29

W procesie TIG stosuje się technikę spawania

A. elektrodą topliwą w osłonie dwutlenku węgla
B. strumieniem elektronów
C. łukiem plazmowym
D. elektrodą wolframową w osłonie argonowej
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 30

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnotorezystancji (Gaussa)
C. magnetooptyczne (Faradaya)
D. piezoelektryczne
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 31

Jak można zmierzyć prędkość przepływu gazu?

A. używając czujnika termoelektrycznego
B. z wykorzystaniem impulsatora fotoelektrycznego
C. za pomocą zwężki Venturiego
D. przy pomocy pirometru radiacyjnego
Pirometr radiacyjny jest urządzeniem służącym do pomiaru temperatury na podstawie promieniowania emitowanego przez obiekt. Choć temperatura może mieć wpływ na gęstość i lepkość gazów, nie bezpośrednio mierzy prędkość ich przepływu. Zastosowanie pirometru jest szczególnie istotne w procesach przemysłowych, gdzie kontrola temperatury jest kluczowa, ale nie ma on zastosowania w pomiarze prędkości. Czujnik termoelektryczny, z kolei, służy do pomiaru temperatury i działa na zasadzie generacji napięcia w odpowiedzi na różnice temperatur. Jak w przypadku pirometru, jego zastosowanie jest ograniczone do monitorowania temperatury, a nie prędkości przepływu gazu. Impulsator fotoelektryczny, natomiast, jest urządzeniem do detekcji obiektów i zliczania impulsów, co również nie ma bezpośredniego związku z pomiarem prędkości gazów. Te pomyłki wynikają z nieporozumienia dotyczącego funkcji i zastosowań różnych typów czujników i przyrządów pomiarowych. Ważne jest, aby rozumieć, jakie właściwości fizyczne są mierzonymi i w jakich kontekstach powinno się ich używać, aby uniknąć błędów w interpretacji danych oraz podjęcia niewłaściwych decyzji inżynieryjnych.

Pytanie 32

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Debugger
B. Deasembler
C. Emulator
D. Kompilator
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 33

Licznik impulsów rewersyjnych to urządzenie

A. które dokonuje odejmowania impulsów
B. które zajmuje się dodawaniem impulsów
C. które wykonuje dodawanie i odejmowanie impulsów
D. które zapisuje w pamięci określoną liczbę impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 34

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Nieszczelność w przewodach pneumatycznych
B. Defekt silnika sprężarki
C. Zabrudzony filtr powietrza
D. Brak smarowania powietrza
Nieszczelność przewodów pneumatycznych jest jedną z kluczowych przyczyn zbyt częstego załączania się silnika sprężarki tłokowej. Tego rodzaju nieszczelności prowadzą do nieefektywnego przesyłu powietrza, co zmusza sprężarkę do częstszego działania w celu utrzymania wymaganego ciśnienia. W praktyce, jeśli przewody pneumatyczne są uszkodzone lub źle połączone, powietrze może uciekać na zewnątrz, co skutkuje ciągłym włączaniem się silnika sprężarki, aby zrekompensować utratę ciśnienia. Ważne jest, aby regularnie kontrolować stan przewodów i połączeń, co powinno być częścią rutynowego serwisowania urządzenia. Dobrą praktyką jest również stosowanie detektorów nieszczelności, które mogą pomóc w szybkiej identyfikacji problemów. W kontekście norm branżowych, należy przestrzegać zaleceń dotyczących konserwacji systemów pneumatycznych, co zazwyczaj obejmuje kontrolę szczelności oraz wymianę uszkodzonych przewodów.

Pytanie 35

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. podnieść poszkodowanego i opatrzyć ranę głowy
B. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
C. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
D. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 36

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Dostosowywać ciśnienie powietrza
B. Wymieniać szybkozłączki
C. Usuwać kondensat
D. Zastępować przewody pneumatyczne
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 37

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody i tyrystory
B. Diody
C. Triaki oraz diaki
D. Triaki
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 38

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginanie
B. Klejenie
C. Spawanie
D. Zgrzewanie
Klejenie jest jedną z technik łączenia elementów wykonanych z tworzyw sztucznych, jednak jej zastosowanie nie prowadzi do trwałego połączenia w sensie mechanicznym, jak to ma miejsce w przypadku zgrzewania, spawania czy zaginania. Kleje używane do łączenia tworzyw sztucznych często działają na zasadzie adhezji, co oznacza, że wiążą elementy poprzez przyciąganie molekularne, a nie poprzez ich fuzję. W praktyce oznacza to, że w przypadku obciążeń mechanicznych, czy zmian temperatury, połączenie może ulegać osłabieniu. Zgrzewanie i spawanie polegają na miejscowym podgrzaniu materiału i połączeniu go w stanie ciekłym, co tworzy jednorodną strukturę. Zaginanie jest techniką formowania, która także nie prowadzi do trwałych połączeń, ale zmienia kształt materiału. W zastosowaniach przemysłowych, takich jak produkcja mebli z tworzyw sztucznych czy elementów elektronicznych, klejenie stosowane jest głównie w procesach, gdzie ważna jest estetyka lub kiedy inne metody są niepraktyczne. Warto zwrócić uwagę na dobór odpowiednich klejów, które są zgodne z typem tworzywa sztucznego oraz wymaganiami aplikacyjnymi, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 39

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 1
B. Przetwornik 4
C. Przetwornik 2
D. Przetwornik 3
Decyzja o wyborze innych przetworników, jak Przetwornik 1, 2 lub 3, wskazuje na błędne zrozumienie podstawowych zasad działania tych urządzeń. Każdy przetwornik ciśnienia ma swoje specyfikacje i charakterystyki wyjściowe, które muszą być zgodne z wartościami ciśnienia, jakie są mierzone. Nieprawidłowe przypisanie funkcji lub wartości sygnałów wyjściowych prowadzi do redukcji efektywności systemu pomiarowego oraz może wprowadzać niepewności w dalszych analizach danych. Problemy te mogą wynikać z niepełnej interpretacji danych katalogowych lub nieuwagi przy analizie wyników pomiarów. W praktyce, przetworniki ciśnienia powinny zawsze działać w określonych granicach tolerancji, a ich sygnały powinny być ściśle monitorowane, aby zapewnić dokładność. Ponadto, nieprawidłowe założenia dotyczące działania przetworników mogą prowadzić do sytuacji, w których błędne decyzje operacyjne są podejmowane na podstawie niedokładnych danych. Warto zwrócić uwagę na standardy branżowe, takie jak normy ISO, które podkreślają znaczenie kalibracji i weryfikacji urządzeń pomiarowych. Niezrozumienie tych zasad może prowadzić do błędnych konkluzji i obniżenia jakości całego procesu technologicznego.

Pytanie 40

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Natężenie prądu elektrycznego
B. Indukcyjność przewodnika
C. Rezystancja przewodnika
D. Gęstość prądu elektrycznego
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.