Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 22 maja 2025 15:39
  • Data zakończenia: 22 maja 2025 15:46

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 8,11 MΩ
B. 8,20 MΩ
C. 6,40 MΩ
D. 6,57 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 2

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka w łazience oraz kuchni
C. oddzielnego dla urządzeń gospodarstwa domowego
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z obwodu z gniazda w łazience i kuchni jest nieodpowiednie, ponieważ takie podejście może prowadzić do wielu problemów związanych z bezpieczeństwem oraz funkcjonalnością. Przede wszystkim, gniazda w łazience są zaprojektowane z myślą o niskiej mocy i specyficznych wymaganiach urządzeń, a ich użycie do zasilania zmywarki może skutkować przeciążeniem obwodu. Użycie wspólnego obwodu dla różnych urządzeń, zwłaszcza w kontekście sprzętu AGD, może prowadzić do nieprzewidywalnych sytuacji, takich jak wyzwolenie zabezpieczeń. Kolejnym problemem jest to, że gniazda w łazience muszą spełniać rygorystyczne normy ochrony przed porażeniem elektrycznym, co w przypadku zmywarki, która działa w wodzie, stwarza dodatkowe ryzyko. Zasilanie zmywarki z jednego obwodu z innym sprzętem gospodarstwa domowego, takim jak lodówka, również jest niewłaściwe, ponieważ może doprowadzić do przeciążeń, co w konsekwencji może skutkować uszkodzeniem urządzeń. Warto więc przestrzegać zasad dotyczących oddzielnych obwodów dla dużych urządzeń, co jest zgodne z normami bezpieczeństwa oraz praktyką instalatorską, aby zapewnić efektywne i bezpieczne działanie wszystkich urządzeń w domu.

Pytanie 3

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. odłącznika
C. wyłącznika nadprądowego
D. wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 4

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka sprężysta
B. Podkładka dystansowa
C. Tuleja redukcyjna
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 5
B. 0,1
C. 0,5
D. 1
Wybór odpowiedzi 5, 0,5 lub 1 wskazuje na nieporozumienie w zakresie pojęcia klasy dokładności narzędzi pomiarowych. Klasa dokładności odnosi się do tego, jak precyzyjnie narzędzie może określićmierzoną wartość. Wartość 5 oznacza, że narzędzie pomiarowe ma stosunkowo niską dokładność, co jest nieodpowiednie w sytuacjach wymagających precyzyjnych pomiarów. Odpowiedź 0,5, podobnie jak 1, wskazuje na umiarkowaną dokładność, jednak w obydwu przypadkach nie osiągają one poziomu precyzji, jakim charakteryzuje się wartość 0,1. Typowym błędem myślowym jest mylenie wartości liczbowych z klasą dokładności, co prowadzi do wniosku, że większa liczba byłaby lepsza. W rzeczywistości, im mniejsza wartość, tym wyższa precyzja, co jest fundamentem w metrologii. Takie podejście jest kluczowe w branżach, gdzie dokładność pomiarów wpływa bezpośrednio na jakość produktów i bezpieczeństwo procesów, np. w przemyśle lotniczym czy medycznym. Właściwe zrozumienie klas dokładności narzędzi pomiarowych jest niezbędne, aby uniknąć błędów w pomiarach i zapewnić zgodność z wymaganiami norm jakości. Niezależnie od używanego narzędzia, kluczem do sukcesu jest znajomość jego dokładności oraz umiejętność dopasowania go do specyficznych potrzeb pomiarowych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik kolejności faz.
B. Przekaźnik czasowy.
C. Lampkę sygnalizacyjną trójfazową.
D. Regulator temperatury.
W przypadku niepoprawnych odpowiedzi, warto przyjrzeć się merytorycznym podstawom, które prowadzą do błędnych konkluzji. Czujnik kolejności faz, mimo że również znajduje zastosowanie w instalacjach elektrycznych, ma zupełnie inny cel niż lampka sygnalizacyjna. Jego zadaniem jest monitorowanie i zabezpieczanie urządzeń przed nieprawidłowym działaniem wynikającym z błędnej sekwencji zasilania. Dlatego, chociaż obydwa urządzenia są istotne dla prawidłowego funkcjonowania instalacji, to ich funkcjonalność i zastosowanie są różne. Przekaźnik czasowy z kolei służy do automatyzacji procesów załączania i wyłączania urządzeń w określonym czasie, co również nie ma związku z sygnalizowaniem stanu zasilania. Regulator temperatury, choć istotny w kontekście bezpieczeństwa urządzeń elektrycznych, nie ma żadnego związku z monitorowaniem napięcia w fazach. Typowym błędem myślowym jest mylenie funkcji różnych urządzeń w rozdzielnicach elektrycznych, co może prowadzić do niewłaściwego doboru sprzętu i w konsekwencji do awarii instalacji. Wiedza o funkcjonalności poszczególnych elementów wyposażenia rozdzielnicy jest kluczowa, aby stosować je w sposób efektywny i zgodny z obowiązującymi normami branżowymi.

Pytanie 9

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód fazowy
B. Przewód uziemiający
C. Przewód neutralny
D. Przewód ochronny
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Transformatorów.
B. Wyłączników różnicowoprądowych.
C. Styczników.
D. Wyłączników nadprądowych.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 12

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,30 V)
B. 230 V (±1,50 V)
C. 230 V (±1,40 V)
D. 230 V (±1,20 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 13

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Krzyżowy
B. Świecznikowy
C. Dwubiegunowy
D. Schodowy
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. podtynkowej.
B. prowadzonej w tynku.
C. prefabrykowanej.
D. natynkowej.
Odpowiedź 'podtynkowej' jest poprawna, ponieważ elektronarzędzie przedstawione na rysunku to frezarka do rowków, która jest kluczowym narzędziem w instalacjach elektrycznych podtynkowych. Umożliwia ono precyzyjne wykonywanie bruzd w murach, gdzie następnie kable elektryczne są układane pod tynkiem. Taki sposób instalacji jest zgodny z najlepszymi praktykami budowlanymi, które zalecają ukrywanie przewodów dla zapewnienia estetyki i bezpieczeństwa. Instalacje podtynkowe chronią kable przed uszkodzeniami mechanicznymi oraz eliminują ryzyko zwarcia spowodowanego wystawieniem przewodów na działanie czynników zewnętrznych. W przypadku zastosowań w obiektach mieszkalnych, standardy budowlane, takie jak PN-IEC 60364, podkreślają znaczenie odpowiedniej izolacji oraz układania instalacji w sposób, który minimalizuje ryzyko uszkodzeń i ułatwia przyszłe prace konserwacyjne.

Pytanie 16

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Brak ochrony przed wilgocią i pyłem.
C. Najwyższy poziom ochrony.
D. Wykorzystanie separacji ochronnej.
Odpowiedzi sugerujące najwyższy stopień ochronności, zastosowanie separacji ochronnej oraz zerową klasę ochronności przed porażeniem nie są poprawne w kontekście oznaczenia IP00. Warto zwrócić uwagę, że najwyższy stopień ochronności jest zazwyczaj reprezentowany przez oznaczenia IP67 lub IP68, gdzie pierwsza cyfra wskazuje na całkowitą ochronę przed pyłem, a druga przed wodą. Odpowiedź sugerująca zastosowanie separacji ochronnej myli się, ponieważ separacja dotyczy różnych aspektów bezpieczeństwa, a nie bezpośrednio ochrony przed wnikaniem wilgoci czy kurzu. Zerowa klasa ochronności przed porażeniem, oznaczana przez klasę II, odnosi się do braku ochrony przez uziemienie, co również nie ma związku z oznaczeniem IP00. Często pojawiającym się błędem myślowym jest mylenie oznaczeń IP z innymi klasami ochrony, np. klasą bezpieczeństwa. Kluczowe jest zrozumienie, że klasyfikacja IP dotyczy specyficznie odporności obudowy na czynniki zewnętrzne, podczas gdy inne klasy ochrony dotyczą zabezpieczeń przed porażeniem elektrycznym czy innymi zagrożeniami. Właściwe zrozumienie klasyfikacji IP jest kluczowe dla bezpiecznego użytkowania urządzeń elektrycznych i zapobiegania niebezpieczeństwom związanym z ich niewłaściwym zastosowaniem.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
B. Natychmiastowe odłączenie zasilania i wymiana przewodu.
C. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
D. Kontynuowanie użytkowania do czasu planowanej konserwacji.
Prawidłowe postępowanie w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego to natychmiastowe odłączenie zasilania i wymiana przewodu. Jest to zgodne z podstawowymi zasadami bezpieczeństwa pracy z urządzeniami i instalacjami elektrycznymi. Uszkodzona izolacja może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem, zwarcia, a nawet pożar. Dlatego kluczowe jest, aby niezwłocznie usunąć zagrożenie poprzez odłączenie zasilania, co zapobiega dalszemu narażeniu na ryzyko. Następnie uszkodzony przewód powinien zostać wymieniony na nowy, spełniający odpowiednie normy i standardy. Takie podejście jest nie tylko zgodne z zasadami BHP, ale także z dobrą praktyką inżynierską, która kładzie nacisk na prewencję i dbałość o bezpieczeństwo użytkowników oraz sprzętu. Przykładem może być wymiana uszkodzonego przewodu w gospodarstwie domowym; ignorowanie takiego problemu mogłoby doprowadzić do poważnych konsekwencji, dlatego działanie jest kluczowe.

Pytanie 19

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.

Pytanie 20

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Wkrętakiem
B. Neonowym wskaźnikiem napięcia
C. Nożem monterskim
D. Kluczem płaskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 21

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. ogrodzenia oraz obudowy
B. separację elektryczną
C. umiejscowienie poza zasięgiem dłoni
D. urządzenia różnicowoprądowe ochronne
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 22

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Redukuje hałas podczas eksploatacji
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Tworzy nieruchome, stałe pole magnetyczne
D. Generuje moment magnetyczny o stałym kierunku
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. gG 16 A
C. aM 20 A
D. aR 16 A
Wybór wkładki topikowej aR 16 A, aM 20 A lub gB 20 A nie jest odpowiedni dla opisanego obwodu bojlera elektrycznego, co wynika z różnych właściwości tych zabezpieczeń. Wkładki aR są zaprojektowane do ochrony przed zwarciami, ale charakteryzują się niższą tolerancją na przeciążenia, co może prowadzić do ich zbyt wczesnego wyłączenia w sytuacjach wystąpienia chwilowych, ale niegroźnych przeciążeń, typowych dla urządzeń grzewczych. W przypadku wkładek aM, które są stosowane głównie w obwodach silnikowych, ich zastosowanie w instalacjach o charakterze grzewczym nie jest zalecane. Dodatkowo, wkładki gB, przeznaczone do obwodów z urządzeniami o dużych prądach rozruchowych, mogą być zbyt dużą wartością dla obwodu bojlera, co stwarza ryzyko braku ochrony przy rzeczywistym przeciążeniu. Niezrozumienie specyfiki wkładek topikowych i ich zastosowania w praktyce często prowadzi do nieodpowiednich wyborów, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować uszkodzenia urządzeń. Dlatego, aby zapewnić właściwe zabezpieczenie, należy stosować wkładki topikowe gG, które gwarantują odpowiednią ochronę przed zwarciami i przeciążeniami w instalacjach grzewczych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Kształt budynku w przestrzeni
C. Metoda montażu instalacji
D. Liczba urządzeń zasilanych z tej instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 28

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,75
C. 0,95
D. 0,79
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 29

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze niskoprężne.
C. Wyładowcze wysokoprężne.
D. Półprzewodnikowe.
Wybór źródła światła wyładowczego niskoprężnego, żarowego lub wyładowczego wysokoprężnego jest błędny z kilku powodów. Źródła wyładowcze niskoprężne, takie jak lampy fluorescencyjne, wymagają odpowiednich warunków ciśnienia, aby generować światło, co jest zupełnie inne niż zasada działania źródeł półprzewodnikowych. Te lampy są również mniej efektywne energetycznie, a ich żywotność jest znacznie krótsza w porównaniu do źródeł LED. Źródła żarowe działają na zasadzie podgrzewania włókna, co prowadzi do znaczących strat energii w postaci ciepła, a ich niska efektywność sprawia, że są mniej preferowane w nowoczesnych zastosowaniach. Wyładowcze wysokoprężne lampy, chociaż bardziej efektywne niż ich niskoprężne odpowiedniki, mają ograniczone zastosowanie w porównaniu do technologii LED, a ich konstrukcja oraz waga mogą być problematyczne w wielu aplikacjach. Często błędne założenia wynikają z nieznajomości różnic technicznych między tymi klasami źródeł światła oraz ich zastosowaniami w praktyce. Współczesne normy dotyczące oświetlenia, takie jak EN 12464-1, zwracają uwagę na znaczenie efektywności energetycznej oraz jakości światła, co wyklucza tradycyjne technologie na rzecz bardziej innowacyjnych rozwiązań, jak diody LED.

Pytanie 30

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. muszą być zasilane wyłącznie z sieci PELV.
B. muszą być zasilane wyłącznie przez transformator separacyjny.
C. mają wzmocnioną izolację.
D. wymagają uziemienia obudowy.
Wybór odpowiedzi wskazujących na konieczność zasilania opraw oświetleniowych wyłącznie przez transformator separacyjny lub z sieci PELV oraz wymaganie uziemienia obudowy wynika z niewłaściwego zrozumienia zasad klasyfikacji urządzeń elektrycznych. Oprawy z symbolem podwójnej izolacji nie wymagają separacji zasilania, ponieważ ich konstrukcja zapewnia wystarczający poziom ochrony przed porażeniem prądem. Transformator separacyjny jest stosowany w urządzeniach, które nie mają podwójnej izolacji i wymagają dodatkowego zabezpieczenia, co oznacza, że jego zastosowanie w przypadku opraw z wzmocnioną izolacją jest zbędne. Ponadto, zasada dotycząca uziemienia nie ma zastosowania w przypadku urządzeń klasy II, ponieważ ich konstrukcja nie przewiduje tego typu zabezpieczeń. Zamiana zasilania na system PELV, który bazuje na niskich napięciach, również jest nieadekwatna, ponieważ oprawy z podwójną izolacją są projektowane do pracy w standardowych warunkach zasilania. Takie nieporozumienia mogą prowadzić do niebezpiecznych praktyk montażowych oraz użytkowania, w których bezpieczeństwo użytkowników może być zagrożone. Kluczowe jest zrozumienie, że podwójna izolacja sama w sobie stanowi wystarczający poziom ochrony, eliminując potrzebę stosowania dodatkowych zabezpieczeń, które są dedykowane innym klasom ochronności.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Oczkowym.
C. Imbusowym.
D. Nasadowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 33

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD

A. D.
B. A.
C. C.
D. B.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
B. Wiertarka, płaskoszczypce, pion, poziomica
C. Wiertarka, piła do cięcia, poziomica, wkrętarka
D. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 39

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SRN
C. SPZ
D. SZR
Wybór innych układów, takich jak SRN (System Rozdziału Napięcia), SPZ (System Powiadamiania Zasilania) czy SCO (System Command Output), jest niewłaściwy, ponieważ nie spełniają one wymagań dotyczących automatycznego przełączania źródeł zasilania. SRN koncentruje się na rozdzielaniu napięcia pomiędzy różne obwody i nie jest przeznaczony do monitorowania źródeł zasilania. Nie zapewnia automatyzacji ani rezerwowego zasilania, co jest kluczowe w kontekście zapewnienia ciągłości działania. Z kolei SPZ jest systemem, który głównie informuje o stanie zasilania, ale nie podejmuje działań w celu przełączenia źródła zasilania. Ostatni z wymienionych, SCO, jest systemem komunikacyjnym, który nie ma zastosowania w kontekście zarządzania zasilaniem. Użytkownicy mogą mylić te układy z SZR, sądząc, że ich funkcje obejmują automatyczne zarządzanie zasilaniem. W praktyce, nieprawidłowe zrozumienie funkcji tych systemów może prowadzić do ryzykownych sytuacji w obiektach wymagających stabilnego zasilania. Kluczowe jest, aby przy wyborze odpowiedniego układu kierować się jego specyfiką i przeznaczeniem, a także stosować się do dobrych praktyk oraz standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo w instalacjach elektrycznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.