Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 21 maja 2025 18:07
  • Data zakończenia: 21 maja 2025 18:59

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Średnicy sworznia tłokowego
B. Średnicy tłoka
C. Objętości cylindra
D. Grubości pierścienia
W kontekście pomiarów mechanicznych, istnieją różne wielkości, które można zmierzyć bezpośrednio, jednak nie wszystkie z nich są odpowiednie dla metody pomiaru bezpośredniego. Średnica tłoka, grubość pierścienia oraz średnica sworznia tłokowego to wymiary, które można określić za pomocą standardowych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry. W przypadku średnicy tłoka, pomiar jest zazwyczaj wykonywany w kilku punktach, aby upewnić się, że uzyskane wartości są reprezentatywne, a także aby zminimalizować błędy pomiarowe. Grubość pierścienia można zmierzyć, przykładając suwmiarkę do najgrubszej części pierścienia, co pozwala na uzyskanie dokładnych pomiarów, które są kluczowe dla prawidłowego dopasowania do cylindra. Podobnie, średnica sworznia tłokowego jest mierzone w kilku punktach, aby uzyskać dokładny pomiar, co ma istotne znaczenie dla zapewnienia odpowiedniej współpracy z tłokiem i cylindrem. Te metody pomiarowe są zgodne z dobrymi praktykami w inżynierii mechanicznej, które zakładają, że wielkości wymiarowe powinny być mierzone bezpośrednio za pomocą precyzyjnych narzędzi, aby uzyskać powtarzalne i dokładne wyniki. Błędne wnioski mogą wynikać z mylnego założenia, że każdą wielkość można zmierzyć bezpośrednio, co nie znajduje zastosowania w przypadku objętości, gdzie konieczne jest uwzględnienie dodatkowych obliczeń i pomiarów pośrednich.

Pytanie 2

Podczas przeprowadzania głównego remontu, po całkowitym zdemontowaniu silnika, jako pierwsze

A. elementy należy poddać regeneracji.
B. części należy umyć.
C. można przystąpić do montażu nowych elementów.
D. elementy należy poddać ocenie.
W trakcie naprawy głównej silnika, umycie wszystkich części jest kluczowym krokiem, który należy podjąć po demontażu. Celem mycia jest usunięcie wszelkich zanieczyszczeń, takich jak olej, smar, pył oraz inne osady, które mogłyby zagrażać dalszej pracy silnika. W procesie mycia wykorzystuje się różne metody, takie jak mycie ultradźwiękowe, chemiczne czy za pomocą wysokociśnieniowych myjek, które są zgodne z branżowymi standardami. Na przykład, czyszczenie za pomocą myjki ciśnieniowej może skutecznie usunąć zanieczyszczenia z trudno dostępnych miejsc. Warto również zwrócić uwagę na dobór odpowiednich środków czyszczących, które nie będą miały negatywnego wpływu na materiały, z których wykonane są części. Po dokładnym umyciu, części powinny być dokładnie osuszone, aby uniknąć korozji. Taki proces mycia przed weryfikacją i regeneracją zapewnia, że inspekcja i ewentualne naprawy są przeprowadzane na czystych elementach, co zwiększa ich żywotność i efektywność całego silnika.

Pytanie 3

Jakie są zalecenia pierwszej pomocy w przypadku oparzenia termicznego?

A. użycie opaski uciskowej
B. schładzanie rany zimną wodą przez około 15 minut
C. wykorzystanie koca termicznego
D. unieruchomienie oparzonego obszaru
Chłodzenie rany zimną wodą przez około 15 minut jest pierwszym i najważniejszym działaniem w przypadku oparzenia termicznego, gdyż pozwala na obniżenie temperatury tkanki i zmniejszenie rozległości uszkodzenia. Woda powinna być czysta i chłodna, jednak nie lodowata, aby uniknąć dodatkowego uszkodzenia skóry. Tego typu działanie prowadzi do rozszerzenia naczyń krwionośnych, co z kolei zmniejsza ból oraz ryzyko powstania pęcherzy. Ważne jest, aby nie stosować lodu bezpośrednio na skórę, ponieważ to może skutkować odmrożeniem uszkodzonej tkanki. Przykładem zastosowania tej procedury jest sytuacja, gdy ktoś przypadkowo dotknie gorącego przedmiotu lub wpadnie w kontakt z płynem wrzącym. Dobrym zwyczajem jest również pamiętanie, że po schłodzeniu rany należy ją przykryć czystym opatrunkiem, aby zminimalizować ryzyko zakażenia, co jest zgodne z najlepszymi praktykami pierwszej pomocy. W przypadku poważniejszych oparzeń, zawsze należy wezwać pomoc medyczną.

Pytanie 4

Czujnik zegarowy ma zastosowanie w pomiarze

A. grubości okładziny klocka hamulcowego
B. bicia osiowego tarczy hamulcowej
C. średnicy czopa wału korbowego
D. średnicy trzonka zaworu
Czujnik zegarowy, znany również jako wskaźnik zegarowy lub wskaźnik mikrometryczny, jest precyzyjnym narzędziem pomiarowym, które służy do mierzenia bicia osiowego tarczy hamulcowej. Ten typ czujnika wykorzystywany jest w mechanice precyzyjnej do oceny niewielkich odchyleń w poziomie lub w pionie. W przypadku tarczy hamulcowej, monitorowanie bicia osiowego jest kluczowe, ponieważ nadmierne bicie może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia efektywności hamowania. Standardy branżowe, takie jak normy SAE (Society of Automotive Engineers) oraz ISO, zalecają regularne kontrole bicia osiowego elementów układu hamulcowego, aby zapewnić maksymalne bezpieczeństwo i wydajność. Przykładem zastosowania czujnika zegarowego może być diagnostyka stanu układu hamulcowego w warsztatach samochodowych, gdzie technicy wykorzystują to narzędzie do oceny i eliminacji problemów z drganiami tarcz, co przedłuża żywotność komponentów oraz zwiększa bezpieczeństwo pojazdów.

Pytanie 5

Aby wyciągnąć i zainstalować tłoki w silniku ZI o czterech cylindrach w układzie rzędowym bez demontażu całego silnika, należy zdemontować

A. głowicę i pokrywy korbowodów
B. pokrywy korbowodów oraz wał korbowy
C. głowicę, pokrywy korbowodów oraz wał korbowy
D. pokrywy korbowodów
Wybór odpowiedzi dotyczącej demontażu jedynie pokryw korbowodów lub dodatkowo wału korbowego pokazuje niepełne zrozumienie budowy silnika i jego komponentów. Pokrywy korbowodów mają na celu zabezpieczanie układu korbowego, ale same w sobie nie wystarczą do uzyskania dostępu do tłoków. Wał korbowy, będąc centralnym elementem przekształcającym ruch posuwisto-zwrotny tłoków na ruch obrotowy, nie powinien być demontowany, gdyż jego usunięcie wiąże się z wieloma dodatkowymi komplikacjami, w tym koniecznością demontażu innych kluczowych komponentów silnika. W przypadku odpowiedzi sugerującej demontaż głowicy i pokryw korbowodów oraz wału korbowego, stwierdzenie to jest zbyteczne, gdyż dostęp do tłoków można uzyskać bez potrzeby demontowania wału, co zwiększa ryzyko błędów w montażu. Typowym błędem myślowym jest założenie, że wszystkie elementy silnika muszą być usunięte do uzyskania dostępu do tłoków. Wiedza o tym, które elementy można zdemontować, a które nie, jest kluczowa w praktyce serwisowej, a niewłaściwe podejście może prowadzić do niepotrzebnych kosztów i czasochłonnych napraw.

Pytanie 6

Z załączonej normy zużycia materiałów eksploatacyjnych wynika, że roczne zużycie oleju silnikowego (bez jego wymiany) pojazdu który przejechał 12 000 km wyniosło

Norma zużycia materiałów eksploatacyjnych
podzespół- silnik
Rodzaj materiałuOlej silnikowy
Pojemność miski olejowej8 l
Norma zużycia na 1000 km0,5 l
Czasokres wymiany1 0000 km

A. 6,01
B. 8,01
C. 8,51
D. 14,01
Wybór innej odpowiedzi mógł wynikać z tego, że nie zrozumiałeś norm dotyczących zużycia oleju. Odpowiedzi jak 8,01 czy 14,01 wyglądają na nadmierne, co może być typowym błędem osób, które nie są na bieżąco z branżowymi standardami. Często ludzie nie zdają sobie sprawy, że zużycie oleju nie zawsze jest liniowe i zależy od różnych czynników, jak typ silnika czy warunki jazdy. Normy zużycia opierają się na danych uzyskanych w praktyce i obejmują różne scenariusze, więc nie można zakładać, że wyższe przebiegi zawsze oznaczają wyższe zużycie oleju. Warto też pamiętać, że niektóre samochody mają lepsze systemy smarowania, co może prowadzić do mniejszego zużycia. Kluczowe jest opieranie się na danych i normach, by lepiej prognozować potrzeby serwisowe i zarządzać eksploatacją pojazdów.

Pytanie 7

Mechanik podczas weryfikacji układu napędowego samochodu powinien zwrócić szczególną uwagę na:

A. Poziom płynu do spryskiwaczy
B. Jakość dźwięku z głośników
C. Stan przegubów homokinetycznych
D. Kondycję wycieraczek przednich
Analizując pozostałe odpowiedzi, zauważamy, że nie dotyczą one bezpośrednio układu napędowego pojazdu. Kondycja wycieraczek przednich, mimo że ważna dla bezpieczeństwa i widoczności podczas jazdy, nie ma wpływu na pracę układu napędowego. To element związany raczej z systemem czystości i widoczności pojazdu. Poziom płynu do spryskiwaczy, podobnie jak kondycja wycieraczek, jest istotny dla utrzymania czystości szyby, ale nie wpływa na funkcjonowanie układu napędowego. Tego typu kwestie są związane z regularnym serwisem, ale nie z diagnostyką układu napędowego. Jakość dźwięku z głośników odnosi się do systemu audio samochodu i nie ma żadnego związku z napędem. To typowy przykład myślenia, gdzie użytkownik koncentruje się na aspektach komfortu, które są ważne, ale nie w kontekście mechaniki pojazdu. Prawidłowe zrozumienie, co wpływa na działanie poszczególnych systemów w samochodzie, jest kluczowe dla efektywnej diagnostyki i naprawy. Utrzymanie koncentracji na rzeczywistych elementach układu napędowego, takich jak przeguby homokinetyczne, jest niezbędne dla skutecznej obsługi technicznej pojazdów.

Pytanie 8

W pojeździe należy dokonać wymiany płynu hamulcowego

A. przy wymianie kompletu naprawczego zacisków hamulcowych
B. gdy jego zawartość wody przekroczy 4%
C. po upływie 5 lat eksploatacji
D. w przypadku wymiany części ruchomych systemu hamulcowego
Prawidłowa odpowiedź wskazuje na to, że płyn hamulcowy powinien być wymieniany, gdy jego zawodnienie przekroczy wartość 4%. Zawodnienie płynu hamulcowego to proces, w którym woda dostaje się do płynu, co negatywnie wpływa na jego właściwości. Płyn hamulcowy powinien mieć odpowiednią lepkość i temperaturę wrzenia, aby zapewnić skuteczne hamowanie. Zbyt duża ilość wody w płynie hamulcowym może prowadzić do osłabienia działania hamulców, a także do korozji elementów układu hamulcowego. Dlatego zaleca się regularne sprawdzanie poziomu zawodnienia płynu oraz jego wymianę w przypadku przekroczenia wspomnianej wartości. W praktyce, wielu producentów zaleca wymianę płynu hamulcowego co dwa lata, niezależnie od poziomu zawodnienia, aby zagwarantować maksymalną skuteczność i bezpieczeństwo. Przykładowo, w samochodach sportowych, które są narażone na intensywne użytkowanie, wymiana płynu hamulcowego co roku jest dobrą praktyką, aby uniknąć ryzyka przegrzania układu hamulcowego. Regularna wymiana płynu hamulcowego zgodnie z normami branżowymi, takimi jak ISO 4925, jest kluczowa dla zachowania sprawności układu hamulcowego.

Pytanie 9

Jaki łączny wydatek wiąże się z wymianą oleju silnikowego, jeśli w silniku znajduje się 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Cały proces trwa 30 minut przy stawce robocizny wynoszącej 120 zł za godzinę?

A. 146,00 zł
B. 138,50 zł
C. 258,50 zł
D. 198,50 zł
Całkowity koszt wymiany oleju silnikowego wynosi 198,50 zł. Można to obliczyć na podstawie kilku rzeczy. Po pierwsze, w silniku jest 3,5 litra oleju, a litr kosztuje 21 zł, więc za olej wychodzi 73,50 zł. Potem mamy filtr oleju, który kosztuje 65 zł. Jak to wszystko zsumujemy, to 73,50 zł plus 65 zł daje w sumie 138,50 zł. Następnie musimy doliczyć koszt robocizny. Jeśli wymiana trwa pół godziny, a stawka za godzinę wynosi 120 zł, to robocizna kosztuje 60 zł. Czyli 138,50 zł plus 60 zł to razem 198,50 zł. Te obliczenia są zgodne z tym, co się praktykuje w serwisach, bo liczy się zarówno materiały, jak i praca przy samochodach.

Pytanie 10

Dynamiczne niewyważenie koła występuje, gdy

A. masa jest nierównomiernie rozłożona - skoncentrowana po jednej stronie.
B. felga ma większą masę.
C. opona ma większą masę.
D. masa jest nierównomiernie rozłożona - po różnych stronach.
Niewyważenie dynamiczne koła występuje w sytuacji, gdy masa nie jest równomiernie rozłożona po obwodzie felgi. Odpowiedź wskazująca na 'nierównomiernie rozłożoną masę - po różnych jej stronach' jest prawidłowa, ponieważ właśnie takie rozłożenie masy prowadzi do powstawania sił odśrodkowych, które generują wibracje podczas obrotu koła. Przykładem praktycznym może być sytuacja, gdy na kole znajdują się różne ciężarki lub uszkodzenia opony, które mogą zmieniać rozkład masy. W branży motoryzacyjnej standardowym zabiegiem w przypadku niewyważenia kół jest ich dynamiczne wyważanie, które polega na umieszczaniu ciężarków w odpowiednich miejscach, aby zredukować wibracje. Stosowanie tej praktyki jest kluczowe dla zapewnienia stabilnej jazdy oraz wydłużenia żywotności układu zawieszenia pojazdu. Należy również pamiętać, że niewyważone koła mogą prowadzić do nadmiernego zużycia opon oraz zwiększonego zużycia paliwa, co jest niekorzystne zarówno dla użytkownika, jak i dla środowiska.

Pytanie 11

Łączny koszt wymiany dwóch zderzaków wymienionych w tabeli (uwzględniający koszt części i pracy mechanika przy wymianie), przy cenie 1 rg. wynoszącej 80 zł i rabacie 5% na całą naprawę, wynosi

Opis czynnościMiejsceRodzajrgCena
ZderzakPWY1500
ZderzakTWY0.5300

A. 798 zł
B. 874 zł
C. 920 zł
D. 836 zł
Poprawna odpowiedź wynika z prawidłowego obliczenia całkowitego kosztu wymiany dwóch zderzaków, co jest kluczowe w kontekście zarządzania budżetem w serwisie samochodowym. Aby uzyskać łączny koszt, należy najpierw zsumować koszty części zamiennych oraz robocizny mechanika. W tym przypadku, przy cenie jednostkowej wynoszącej 80 zł za jeden zderzak i przy uwzględnieniu pracy mechanika, całkowita kwota przed rabatem osiągnie wyższą wartość. Po zsumowaniu tych kosztów należy odjąć 5% rabatu, co jest standardową praktyką w serwisach, aby zachęcić klientów do korzystania z ich usług. W efekcie, ostateczny koszt wynosi 874 zł, co pokazuje, jak ważne jest dokładne obliczanie kosztów, aby uniknąć nieporozumień w fakturowaniu. Wzmacnia to również relacje z klientami, gdyż przejrzystość w kosztach buduje zaufanie i lojalność. Przykładem może być sytuacja, w której serwis samochodowy stosuje dedykowane oprogramowanie do zarządzania kosztami, co pozwala na łatwiejsze śledzenie i analizę wydatków, a także dostosowywanie rabatów do konkretnych klientów w celu zwiększenia ich satysfakcji.

Pytanie 12

Czujniki magnetoindukcyjne wykorzystywane w systemach zapłonowych silników ZI zlikwidowały

A. cewkę zapłonową
B. rozdzielacz zapłonu
C. przerywacz
D. czujnik położenia wału korbowego silnika
Wybór odpowiedzi dotyczącej cewki zapłonowej, rozdzielacza zapłonu czy czujnika położenia wału korbowego może prowadzić do nieporozumień dotyczących funkcji poszczególnych elementów układu zapłonowego. Cewka zapłonowa jest kluczowym komponentem, który przekształca niskonapięciowy sygnał z akumulatora na wysokie napięcie, niezbędne do wytworzenia iskry w świecy zapłonowej. Dlatego jej eliminacja nie jest możliwa w kontekście działania silnika ZI. Z kolei rozdzielacz zapłonu, który kieruje impulsy zapłonowe do odpowiednich cylindrów, również nie może zostać wyeliminowany, ponieważ pełni rolę w synchronizacji procesu zapłonu z cyklem pracy silnika. A czujnik położenia wału korbowego, jako element odpowiedzialny za monitorowanie pozycji wału, jest niezwykle istotny dla precyzyjnego sterowania zapłonem i nie może być zastąpiony przez czujniki magnetoindukcyjne. Wybór tych odpowiedzi może wynikać z mylnego przekonania, że nowoczesne technologie całkowicie zastępują tradycyjne elementy, podczas gdy w rzeczywistości wiele z nich nadal współistnieje w złożonych układach zapłonowych, aby zapewnić ich optymalne działanie. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla właściwej diagnozy i naprawy układów zapłonowych w silnikach ZI.

Pytanie 13

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zapewnienie stabilności prowadzenia pojazdu
B. Zwiększenie mocy silnika
C. Poprawa wyglądu pojazdu
D. Zmniejszenie zużycia paliwa
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 14

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 20 V AC
B. 2 V AC
C. 2 V DC
D. 20 V DC
Odpowiedź 20 V DC to trafny wybór. Kiedy mierzysz spadek napięcia na akumulatorze, który działa w trybie stałoprądowym, to woltomierz musi być przystosowany do napięcia stałego (DC). Wartość 20 V powinna być wystarczająca do uchwycenia typowych spadków napięcia, które mogą wystąpić podczas uruchamiania silnika. W praktyce, warto zmierzyć napięcie przed uruchomieniem i w trakcie rozruchu, żeby upewnić się, że akumulator działa jak należy. Jeśli wskazania spadają poniżej 12 V, to raczej coś jest nie tak. W branży mamy standardy, jak SAE J537, które podkreślają, jak ważne jest monitorowanie napięcia akumulatora, żeby zapobiegać różnym awariom w systemach elektrycznych pojazdu. Z kolei prawidłowe pomiary to klucz do diagnostyki i planowania konserwacji akumulatorów – bez tego ciężko będzie utrzymać efektywność zasilania.

Pytanie 15

Które z poniższych działań nie jest wymagane po wymianie klocków oraz tarcz hamulcowych?

A. Odpowietrzenie układu hamulcowego.
B. Dokręcenie śrub mocujących zaciski hamulcowe z odpowiednim momentem.
C. Odtłuszczenie tarcz hamulcowych
D. Przeprowadzenie testu działania hamulców.
Dokręcenie śrub mocujących zaciski hamulcowe odpowiednim momentem jest kluczowym elementem zapewniającym stabilność i bezpieczeństwo układu hamulcowego. Niewłaściwe dokręcenie tych śrub może prowadzić do ich luzowania się w trakcie jazdy, co z kolei może prowadzić do utraty kontroli nad pojazdem. Z kolei wykonanie próby działania hamulców po wymianie klocków i tarcz jest bezwzględnie konieczne, aby upewnić się, że wszystkie komponenty współpracują ze sobą prawidłowo. Niedostateczne sprawdzenie ich działania może skutkować nieprzewidzianymi sytuacjami na drodze, a nawet wypadkiem. Odtłuszczenie tarcz hamulcowych przed ich zamontowaniem jest również istotnym krokiem, który pozwala na usunięcie wszelkich zanieczyszczeń, które mogą wpływać na skuteczność hamulców. Zanieczyszczone tarcze mogą prowadzić do szumów, wibracji oraz nierównomiernego zużycia klocków hamulcowych. Powszechnym błędem jest zatem pomijanie tych istotnych kroków w procesie wymiany, co może wpływać na całościową efektywność hamulców. Ważne jest, aby każda czynność była przeprowadzana zgodnie z ustalonymi normami oraz zaleceniami producenta, co zapewnia bezpieczeństwo i wysoką jakość pracy układu hamulcowego. Przeprowadzanie wszystkich tych działań zgodnie z normami branżowymi jest kluczowe dla utrzymania odpowiednich standardów bezpieczeństwa na drodze.

Pytanie 16

Symbol 16V wskazuje na

A. silnik szesnastozaworowy
B. silnik widlasty z szesnastoma cylindrami
C. silnik rzędowy z szesnastoma cylindrami
D. silnik Wankla
Oznaczenie silnika 16V odnosi się do liczby zaworów w każdej głowicy cylindrów silnika, co w przypadku silników czterocylindrowych oznacza, że każdy cylinder ma po cztery zawory: dwa ssące i dwa wydechowe. Takie rozwiązanie pozwala na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną oraz efektywniejsze odprowadzanie spalin, co przekłada się na wyższą moc silnika oraz lepszą ekonomikę spalania. Silniki 16V są powszechnie stosowane w nowoczesnych pojazdach, co czyni je standardem w przemyśle motoryzacyjnym. Przykładem mogą być popularne jednostki napędowe w pojazdach marki Volkswagen czy Honda, które charakteryzują się dużą wydajnością i oszczędnością paliwa. Zastosowanie technologii 16V jest zgodne z dobrymi praktykami konstrukcyjnymi, które dążą do optymalizacji parametrów silnika. Warto również dodać, że silniki z większą liczbą zaworów mogą osiągać lepsze osiągi przy wyższych prędkościach obrotowych, co jest istotne w kontekście sportowego charakteru niektórych pojazdów.

Pytanie 17

Masa własna pojazdu to?

A. maksymalna masa ładunku oraz osób, którą pojazd może przewozić
B. masa pojazdu razem z masą osób i przedmiotów, które się w nim znajdują
C. masa pojazdu z typowym wyposażeniem: paliwem, olejami, smarami oraz cieczami w ilościach nominalnych, bez kierowcy
D. masa pojazdu z osobami oraz ładunkiem, gdy jest dopuszczony do ruchu na drodze
Wybór odpowiedzi, która definiuje masę własną pojazdu jako największą masę ładunku i osób, jaką może przewozić pojazd, jest błędny, ponieważ myli pojęcia związane z masą pojazdu. Masa własna odnosi się do wagi samego pojazdu, a nie do ładowności, co jest zupełnie innym wskaźnikiem. Definiowanie masy własnej w kontekście ładunku prowadzi do mylnego myślenia, że pojazd bez żadnych dodatkowych obciążeń ma tę samą masę, co przy pełnym załadunku. Ponadto, masa pojazdu obciążonego osobami i ładunkiem dopuszczonego do poruszania się po drodze odnosi się do masy całkowitej, co jest również innym pojęciem niż masa własna. Zrozumienie różnicy między tymi pojęciami jest kluczowe dla utrzymania bezpieczeństwa na drogach oraz przestrzegania przepisów dotyczących masy pojazdów. Błędy w klasyfikacji masy pojazdu mogą prowadzić do niepoprawnych decyzji podczas transportu, co zwiększa ryzyko wypadków oraz naruszenia regulacji prawnych. W praktyce, kierowcy oraz operatorzy floty muszą być świadomi tych różnic, aby skutecznie zarządzać pojazdami i zapewnić ich odpowiednie wykorzystanie zgodnie z przepisami oraz standardami branżowymi.

Pytanie 18

Po przeprowadzeniu analizy amortyzatorów tylnych pojazdu ustalono, że poziom tłumienia prawego wynosi 35%, a lewego 56%. Wyniki te sugerują, że

A. należy zregenerować prawy amortyzator
B. amortyzatory są całkowicie sprawne
C. prawy amortyzator powinien zostać wymieniony
D. konieczna jest wymiana obu amortyzatorów
Musisz wymienić oba amortyzatory, bo ich zdolność tłumienia jest za niska. Standardowo powinno być przynajmniej 50%, a prawy ma tylko 35%. To znacznie obniża jego efektywność, co później może wpłynąć na komfort jazdy i stabilność całego auta. Lewy amortyzator też nie jest idealny, bo choć ma 56%, to wciąż nie spełnia wymagań. W praktyce lepiej jest wymienić oba naraz, bo jak jeden działa słabo, to może to negatywnie wpływać na jazdę i sporadycznie przyspieszać zużycie innych części zawieszenia. Pamiętaj, amortyzatory są mega ważne dla bezpieczeństwa, więc lepiej je mieć w dobrym stanie, żeby nie narażać siebie i innych na drodze. Regularne sprawdzanie i wymiana amortyzatorów to klucz do zachowania dobrego stanu zawieszenia.

Pytanie 19

Oktanowa liczba paliwa wskazuje na

A. wartość opałową paliwa
B. odporność paliwa na spalanie detonacyjne
C. skłonność paliwa do samozapłonu
D. odporność paliwa na samozapłon
Odpowiedzi wskazujące na skłonności czy odporności paliwa na samozapłon są mylące, ponieważ liczba oktanowa w rzeczywistości nie odnosi się do tych aspektów. Skłonność paliwa do samozapłonu, nazywana również liczbą cetanową w kontekście olejów napędowych, jest miarą tego, jak łatwo paliwo zapala się pod wpływem ciśnienia i temperatury, co jest istotne głównie dla silników wysokoprężnych. Natomiast liczba oktanowa dotyczy silników benzynowych i ich zdolności do unikania detonacyjnego spalania, które może prowadzić do uszkodzenia silnika. Odporność na spalanie detonacyjne oznacza, że paliwo nie zapali się zbyt wcześnie w cyklu pracy silnika, co jest kluczowe dla zachowania efektywności i bezpieczeństwa działania. Warto również zauważyć, że pojęcie wartości opałowej paliwa, które jest kolejnym błędnym kierunkiem w odpowiedziach, odnosi się do ilości energii wydobywanej z paliwa podczas spalania, a nie jego zachowania w kontekście samozapłonu czy spalania detonacyjnego. Dlatego ważne jest, aby zrozumieć, że materiały eksploatacyjne, takie jak paliwa, są klasyfikowane na podstawie różnych właściwości, które odpowiadają ich specyficznym zastosowaniom, a mylenie tych terminów może prowadzić do niewłaściwych wyborów w doborze paliwa dla silników, co w dłuższej perspektywie może skutkować obniżoną wydajnością, zwiększonymi emisjami spalin oraz uszkodzeniem silnika.

Pytanie 20

Podczas wymiany uszkodzonej tarczy sprzęgłowej zaleca się również wymianę

A. wałka sprzęgłowego
B. tarczy dociskowej
C. koła zamachowego
D. linki sprzęgła
Wymiana tarczy sprzęgła często wymaga również wymiany tarczy dociskowej, ponieważ obie te części są ze sobą ściśle powiązane. Tarcza dociskowa ma kluczowe znaczenie dla prawidłowego funkcjonowania sprzęgła, ponieważ to właśnie ona naciska na tarczę sprzęgłową, umożliwiając przeniesienie momentu obrotowego z silnika na skrzynię biegów. W przypadku zużycia tarczy sprzęgłowej, tarcza dociskowa także może być uszkodzona, co prowadzi do problemów z załączaniem i wyłączaniem sprzęgła. Przykładowo, jeśli tarcza dociskowa jest zbyt zużyta, może nie zapewniać wystarczającego ciśnienia, co skutkuje ślizganiem się sprzęgła. Zgodnie z zaleceniami wielu producentów pojazdów oraz specjalistów zajmujących się naprawami, wymiana obu elementów jest standardową praktyką, co zapobiega przyszłym problemom i zapewnia optymalne działanie układu przeniesienia napędu. Dodatkowo, przy wymianie tych komponentów warto zwrócić uwagę na stan pozostałych elementów układu, takich jak koło zamachowe, ponieważ ich uszkodzenie również może wpływać na efektywność sprzęgła.

Pytanie 21

W silniku dwusuwowym o jednym cylindrze w trakcie suwu roboczego wał korbowy obraca się o kąt

A. 90°
B. 180°
C. 270°
D. 360°
Zrozumienie działania silnika dwusuwowego wymaga analizy cyklu pracy i mechaniki jego działania. Odpowiedzi, które wskazują na inne wartości kątowe obrotu wału korbowego, nie uwzględniają podstawowej zasady funkcjonowania tych silników. Na przykład, obrót o 90° sugerowałby, że wał korbowy mógłby wykonawać suw tylko jednego z procesów, co jest niezgodne z zasadą działania silnika dwusuwowego, w którym oba procesy, czyli ssanie i wydech, odbywają się w jednym cyklu. Z kolei obrót o 360° oznaczałby konieczność pełnego obrotu wału, co jest charakterystyczne dla silników czterosuwowych, gdzie jeden pełny cykl wymaga dwóch obrotów wału. Zastosowanie tej koncepcji w kontekście silników dwusuwowych prowadzi do błędów interpretacyjnych, ponieważ dwusuwowe jednostki napędowe są zaprojektowane tak, aby maksymalizować ich wydajność poprzez skrócenie cyklu pracy. Natomiast obrót o 270° również wskazuje na nieprawidłowe zrozumienie, ponieważ oznaczałby, że jeden cykl nie zostałby w pełni ukończony, co skutkowałoby niewłaściwym działaniem silnika. W praktyce, mechanicy powinni być świadomi tych różnic i błędów myślowych, aby móc prawidłowo diagnozować i serwisować silniki, a także unikać pułapek związanych z nieprawidłowym zrozumieniem pracy jednostek napędowych.

Pytanie 22

Regulator odśrodkowy oraz regulator podciśnieniowy stanowią składniki systemu

A. rozrządu
B. zasilania z wtryskiem wielopunktowym
C. zapłonowego
D. zasilania z wtryskiem jednopunktowym
Pojęcia związane z regulatorem odśrodkowym i podciśnieniowym są często mylone z innymi systemami w silnikach spalinowych, co może prowadzić do nieporozumień w zakresie ich zastosowania. W przypadku układu zasilania z wtryskiem jednopunktowym, który charakteryzuje się prostą konstrukcją, nie stosuje się osobnych regulatorów odśrodkowych ani podciśnieniowych. Wtrysk jednopunktowy wykorzystuje zazwyczaj jeden wtryskiwacz, co ogranicza potrzebę zaawansowanej regulacji zapłonu. Podobnie, układ rozrządu, odpowiedzialny za synchronizację ruchu zaworów, nie ma bezpośredniego związku z funkcjonowaniem regulatorów zapłonu. Takie pomylenie wynika często z niepełnego zrozumienia, jakie elementy odpowiadają za różne procesy w silniku. Układ zapłonowy jest odrębnym systemem, który niezależnie reguluje moment zapłonu w odpowiedzi na różne parametry pracy silnika. W przypadku układu zapłonowego, zarówno regulator odśrodkowy, jak i podciśnieniowy, są integralnymi częściami, które zapewniają optymalną pracę silnika w różnych warunkach. Wtryskiwanie paliwa, niezależnie od tego, czy jest jednopunktowe, czy wielopunktowe, również nie wpływa na działanie regulatorów zapłonu, ponieważ ich główną funkcją jest zapewnienie odpowiedniego momentu zapłonu, a nie kontrola procesu wtrysku. To zrozumienie różnic między tymi systemami jest kluczowe dla efektywnej diagnostyki i naprawy silników spalinowych. Wiedza o tym, jakie elementy są odpowiedzialne za konkretne funkcje w silniku, pozwala uniknąć nieporozumień oraz poprawia jakość wykonywanych napraw i usług serwisowych.

Pytanie 23

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. modyfikacja prędkości kół napędowych
B. ochrona załączonego biegu przed rozłączeniem
C. ograniczenie momentu obrotowego przekazywanego na koła
D. wyrównanie prędkości obrotowych załączanych elementów
Nieprawidłowe podejście do funkcji synchronizatora często prowadzi do nieporozumień w zakresie jego roli w skrzyni biegów. Zmiana prędkości kół napędowych nie jest bezpośrednim zadaniem synchronizatora, ponieważ jego funkcja polega na dostosowywaniu prędkości obrotowych wewnętrznych elementów skrzyni biegów, a nie na regulacji prędkości finalnych, które osiągają koła. Podobnie, zmniejszenie momentu obrotowego przekazywanego na koła jest niewłaściwym zrozumieniem działania synchronizatora, który nie ma na celu redukcji momentu, lecz zapewnienie właściwego połączenia elementów przy zachowaniu odpowiednich wartości momentów obrotowych. Zabezpieczenie włączonego biegu przed rozłączeniem również nie jest rolą synchronizatora. Chociaż elementy skrzyni biegów są projektowane z myślą o minimalizacji ryzyka przypadkowego rozłączenia, to jednak głównym celem synchronizatora pozostaje synchronizacja prędkości obrotowych. Powszechnym błędem jest mylenie funkcji synchronizatora z funkcjami innych elementów skrzyni biegów, co prowadzi do nieprawidłowego pojmowania mechanizmu działania całego układu. Właściwe zrozumienie tych zagadnień jest kluczowe dla inżynierów mechaników oraz techników zajmujących się naprawą i konserwacją skrzyń biegów.

Pytanie 24

Płyn o najwyższej temperaturze wrzenia to?

A. DOT 3
B. DOT 4
C. DA 1
D. R3
Prawidłowa odpowiedź to DOT 4, który jest płynem hamulcowym o najwyższej temperaturze wrzenia w porównaniu do innych wymienionych płynów. DOT 4 charakteryzuje się wyższą temperaturą wrzenia, wynoszącą zazwyczaj od 230 do 260°C w porównaniu do DOT 3, który ma temperaturę wrzenia od 205 do 230°C. W kontekście zastosowania płynów hamulcowych, wybór DOT 4 jest szczególnie istotny w samochodach sportowych oraz w pojazdach, które są narażone na intensywne hamowanie, ponieważ wyższa temperatura wrzenia minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamowania. Zgodnie z normami SAE i DOT, wybór odpowiedniego płynu powinien być zgodny z wymaganiami producenta pojazdu, co zapewnia bezpieczeństwo i efektywność systemu hamulcowego. Dodatkowo, DOT 4 jest bardziej odporny na wchłanianie wilgoci, co przekłada się na dłuższą żywotność i stabilność chemiczną.

Pytanie 25

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. gdy temperatura płynu chłodzącego jest wysoka
B. gdy temperatura płynu chłodzącego jest niska
C. po uruchomieniu ogrzewania wnętrza
D. tuż po uruchomieniu silnika
Odpowiedzi, które sugerują, że termostat otwiera przelot cieczy chłodzącej przy niskiej temperaturze lub natychmiast po rozruchu silnika, są niepoprawne i wynikają z nieporozumienia dotyczącego funkcji termostatu. Termostat jest zaprojektowany tak, aby otwierać się tylko wtedy, gdy temperatura cieczy chłodzącej osiągnie określony poziom, co ma na celu zapewnienie, że silnik pracuje w optymalnym zakresie temperatur. Otwarcie termostatu w momencie, gdy temperatura jest niska, prowadziłoby do nieefektywnego ogrzewania silnika, co może być szkodliwe dla jego komponentów. W przypadku włączenia ogrzewania nadwozia, choć może to wydawać się logiczne, tak naprawdę termostat uruchamia obieg cieczy chłodzącej w odpowiedzi na osiągnięcie wysokiej temperatury silnika, a nie na żądanie systemu ogrzewania. Typowym błędem myślowym jest przyjmowanie, że wszelkie działania związane z chłodzeniem powinny być inicjowane natychmiast po rozruchu silnika, co jest mylące. Efektywna praca silnika wymaga czasowego zarządzania temperaturą, a termostat pełni tu kluczową rolę w procesie osiągania i utrzymywania optymalnej temperatury roboczej.

Pytanie 26

Podczas wymiany szyby w pojeździe należy użyć szyby

A. z logo producenta samochodu.
B. ze znakiem homologacji.
C. zalecanej przez autoryzowany serwis.
D. polecanej przez niezależny warsztat.
Wybór szyby rekomendowanej przez autoryzowany serwis może wydawać się rozsądny, jednak nie zawsze gwarantuje to, że produkt spełnia wymagane normy bezpieczeństwa. Wiele autoryzowanych serwisów stosuje różne firmy dostarczające szyby, a niektóre z nich mogą oferować komponenty, które nie mają odpowiednich certyfikatów homologacyjnych. Z kolei zalecenie niezależnego warsztatu może prowadzić do użycia zamienników, które nie są przetestowane pod kątem wytrzymałości i jakości, co z kolei może wpłynąć na bezpieczeństwo użytkowników pojazdu. Użycie szyby z logo producenta również nie jest wystarczającym zabezpieczeniem; nie każda szyba, nawet od producenta, ma homologację i spełnia wszystkie normy. Może się zdarzyć, że oryginalne komponenty nie są zgodne z aktualnymi normami bezpieczeństwa, co stawia pod znakiem zapytania ich efektywność. Szyby ze znakiem homologacji są jedynym pewnym wyborem, ponieważ zapewniają, że zostały poddane rygorystycznym testom i spełniają wszystkie wymogi regulacyjne. Dlatego ważne jest, aby przy wymianie szyby kierować się nie tylko marką, ale przede wszystkim spełnianiem norm oraz certyfikacją, co jest kluczowe dla ogólnego bezpieczeństwa na drodze.

Pytanie 27

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. zgrzewanie
B. klejenie
C. lutowanie
D. kręcenie
Wydaje się, że wybór innych metod łączenia elementów podłogi w samochodach może być łatwy, ale każda z nich ma swoje ograniczenia. Na przykład, skręcanie wykorzystuje mechaniczne połączenia, które mogą osłabić strukturę, szczególnie gdy elementy są narażone na wibracje i różne obciążenia. Jeśli używamy śrub czy nakrętek, to czasem może to prowadzić do luzów, a w ekstremalnych warunkach użytkowania, jak w samochodach, mogą wystąpić poważne awarie. A lutowanie, mimo że jest popularne w elektronice, nie nadaje się raczej do materiałów konstrukcyjnych podłogi - potrzebuje szczególnych stopów, które mogą nie wytrzymać obciążeń w pojazdach. I jeszcze do tego, lutowanie nie tworzy jednolitej struktury, co może być kluczowe dla wytrzymałości. Choć klejenie czasami działa, w motoryzacji często nie radzi sobie z warunkami atmosferycznymi i zmianami temperatury. To wszystko sprawia, że zgrzewanie wydaje się najlepszym wyborem, bo łączy w sobie wytrzymałość, niską wagę oraz koszty produkcji, co pokazuje, jak ważne jest dobrze dobierać metody łączenia w inżynierii motoryzacyjnej.

Pytanie 28

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. zużytych gniazd zaworów
B. luźnych łożysk wału rozrządu
C. niedostatecznego smarowania
D. nieprawidłowego dokręcenia śrub
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 29

Jaką czynność należy wykonać w pierwszej kolejności, udzielając pomocy osobie rażonej prądem elektrycznym?

A. bezpieczne oddzielenie poszkodowanego od źródła prądu.
B. informowanie dostawcy energii elektrycznej o potrzebie odłączenia napięcia.
C. zawiadomienie przełożonego o wystąpieniu wypadku.
D. sprawdzenie tętna oraz oddechu osoby poszkodowanej.
Pierwszą czynnością przy udzielaniu pomocy osobie, która została porażona prądem elektrycznym, jest bezpieczne uwolnienie jej od źródła porażenia. W praktyce oznacza to, że pomocnik powinien najpierw zadbać o własne bezpieczeństwo oraz ocenić sytuację. Wyłączenie prądu jest kluczowe, ale nie zawsze jest to możliwe w danym momencie. Dlatego w pierwszej kolejności należy zastosować środki, które minimalizują ryzyko dalszych obrażeń, takie jak użycie izolujących narzędzi (np. kij z materiału nieprzewodzącego) do odsunięcia poszkodowanego od źródła prądu. Ważne jest, aby nie dotykać personelu bezpośrednio, gdyż można również zostać porażonym. Gdy osoba jest już bezpieczna, można przejść do oceny jej stanu zdrowia, takiej jak sprawdzenie tętna i oddychania. W sytuacjach kryzysowych, jak porażenie prądem, dobre praktyki i standardy bezpieczeństwa, np. zgodne z wytycznymi Krajowego Centrum Ratownictwa Medycznego, sugerują, że priorytetem jest zawsze bezpieczeństwo ratownika oraz osoby poszkodowanej.

Pytanie 30

Parametrem opisującym jest liczba oktanowa

A. skroplony gaz ziemny (CNG)
B. płynny gaz ropopochodny (LPG)
C. benzynę bezołowiową
D. olej napędowy
Wybór odpowiedzi dotyczącej oleju napędowego, płynnego gazu ropopochodnego (LPG) czy skroplonego gazu ziemnego (CNG) jest błędny, ponieważ te paliwa nie są klasyfikowane według liczby oktanowej. Zamiast tego, olej napędowy jest oceniany na podstawie liczby cetanowej, która definiuje jego zdolność do zapłonu w silnikach diesla. Liczba cetanowa różni się od liczby oktanowej, ponieważ odnosi się do innego procesu spalania. Z kolei LPG i CNG są gazami, które również nie wymagają oceny na podstawie liczby oktanowej, gdyż działają w innych warunkach i mają różne właściwości chemiczne. Typowe pomyłki w rozumieniu tych koncepcji mogą wynikać z zamieszania między różnymi typami silników i sposobami spalania paliw. Kluczowe jest zrozumienie, że liczba oktanowa odnosi się wyłącznie do benzyny i jest istotna dla silników o zapłonie iskrowym, podczas gdy inne paliwa, takie jak olej napędowy, wykorzystują inne mechanizmy zapłonu, co sprawia, że ich ocena bazuje na innych parametrach, takich jak liczba cetanowa. Przypisanie liczby oktanowej do tych paliw świadczy o nieporozumieniu w kwestii podstawowych różnic w chemii paliw i ich zastosowań w różnych typach silników.

Pytanie 31

Popychacz w systemie rozrządu wpływa bezpośrednio na

A. chłodzenie silnika
B. spalanie paliwa
C. otwieranie zaworu
D. lubrykację silnika
Popychacz w układzie rozrządu pełni kluczową rolę w otwieraniu i zamykaniu zaworów silnika. Jego działanie jest bezpośrednio związane z cyklem pracy silnika, gdzie popychacz przekształca ruch obrotowy wału korbowego na ruch liniowy, co z kolei prowadzi do otwierania zaworów dolotowych lub wylotowych. Przykładem zastosowania popychaczy są silniki typu OHV (Overhead Valve), w których popychacze przekazują ruch z wałka rozrządu na zawory, co zapewnia precyzyjne synchronizowanie otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Właściwe działanie popychaczy jest kluczowe dla osiągnięcia optymalnej efektywności silnika, co potwierdzają standardy branżowe przy projektowaniu układów rozrządu. Dobre praktyki w tej dziedzinie obejmują regularne serwisowanie układów rozrządu oraz stosowanie komponentów zgodnych z wytycznymi producentów, co zapewnia niezawodność i wydajność silnika.

Pytanie 32

Aby pozbyć się nadmiernego luzu nowego sworznia tłokowego w główce korbowodu, konieczne jest wykonanie operacji na tulejce ślizgowej główki korbowodu

A. szlifować
B. wymienić na nową
C. frezować
D. przetoczyć
Wymiana tulejki ślizgowej główki korbowodu na nową jest kluczowym krokiem w usuwaniu nadmiernego luzu nowego sworznia tłokowego. Użycie nowej tulejki zapewnia optymalne dopasowanie i minimalizuje ryzyko wystąpienia luzu, co jest niezwykle istotne dla prawidłowego działania silnika. Przykładowo, w silnikach spalinowych, które pracują pod wysokim obciążeniem, odpowiednie dopasowanie elementów jest niezbędne, aby zminimalizować zużycie oraz ryzyko awarii. Zgodnie z dobrymi praktykami w branży mechanicznej, wymiana uszkodzonych lub zużytych komponentów jest standardową procedurą naprawczą. Ponadto, nowa tulejka zapewnia lepsze smarowanie oraz wydajniejsze przenoszenie obciążeń, co przyczynia się do dłuższej żywotności silnika. Warto również zwrócić uwagę, że podczas wymiany tulejki należy stosować się do wskazówek producenta dotyczących tolerancji oraz materiałów, z których wykonane są nowe elementy, aby zapewnić ich kompatybilność i wysoką jakość działania.

Pytanie 33

Część zawieszenia – kolumna McPhersona – pełni równocześnie rolę

A. wahacza wleczonego
B. drążka reakcyjnego
C. zwrotnicy układu kierowniczego
D. drążka stabilizacyjnego
Wybór wahacza wleczonego, drążka stabilizacyjnego lub drążka reakcyjnego jako pełniących funkcję kolumny McPhersona jest nieprawidłowy, ponieważ każdy z tych elementów ma odmienne funkcje w układzie zawieszenia. Wahacz wleczony, na przykład, jest elementem, który w głównej mierze odpowiada za utrzymywanie kół w odpowiedniej pozycji w płaszczyźnie pionowej oraz ograniczenie ich ruchów wzdłużnych, co jest kluczowe dla zachowania stabilności pojazdu. W przeciwieństwie do kolumny McPhersona, nie pełni on funkcji kierunkowej, co jest fundamentalne w kontekście manewrowania pojazdem. Drążek stabilizacyjny, z kolei, jest odpowiedzialny za redukcję przechyłów nadwozia w trakcie zakrętów, zapewniając większą stabilność, ale nie ma wpływu na kierowanie. Drążek reakcyjny również nie ma związku z kierowaniem, a jego funkcja polega na przeciwdziałaniu ruchom wzdłużnych sił podczas pracy zawieszenia. Wszystkie te elementy pełnią ważne, ale różne role w układzie zawieszenia, co może prowadzić do błędnych wniosków, jeśli nie zrozumie się, że kolumna McPhersona łączy zarówno funkcję zawieszenia, jak i układu kierowniczego w jednym elemencie. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i naprawy pojazdów, a także dla oceny ich wydajności i bezpieczeństwa. W praktyce technicznej, nieprawidłowe zrozumienie roli elementów zawieszenia może prowadzić do błędów w diagnostyce problemów z zawieszeniem, co z kolei wpływa na bezpieczeństwo jazdy.

Pytanie 34

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę stanu zużycia drążków kierowniczych
B. analizę zużycia sprężyn zawieszenia
C. analizę stanu zużycia tulei wahaczy
D. analizę wzrokową stopnia zużycia opon pojazdu
Wybór odpowiedzi dotyczących oceny zużycia drążków kierowniczych, tulei wahaczy oraz sprężyn zawieszenia może prowadzić do nieprawidłowych wyników oceny stanu technicznego pojazdu. Choć te elementy są istotne dla funkcjonowania układu zawieszenia, nie są bezpośrednio związane z wstępną, organoleptyczną oceną stanu amortyzatora. Drążki kierownicze są odpowiedzialne za kierowanie pojazdem, a ich zużycie może wpływać na precyzję prowadzenia, ale ich badanie nie jest pierwszym krokiem w ocenie stanu amortyzatorów. Tuleje wahaczy, które odpowiadają za stabilność zawieszenia, można ocenić jedynie w późniejszych etapach diagnostyki. Natomiast sprężyny zawieszenia, choć kluczowe dla amortyzacji, również wymagają bardziej szczegółowego badania, które nie jest częścią wstępnej, wizualnej oceny. Często błędne rozumienie struktury układu zawieszenia oraz jego poszczególnych komponentów prowadzi do zaniżania znaczenia oceny stanu opon. W praktyce nieprawidłowe oceny mogą skutkować niebezpiecznymi warunkami na drodze, co podkreśla znaczenie zrozumienia oraz przestrzegania właściwych procedur diagnostycznych.

Pytanie 35

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. zbyt duże zanieczyszczenie filtra oleju
B. zużycie czopów wału korbowego
C. uszkodzenie uszczelki pod głowicą
D. awaria pompy olejowej
Nadmierne zabrudzenie filtra oleju może prowadzić do spadku ciśnienia oleju w silniku, co objawia się problemami z smarowaniem, ale nie jest przyczyną wzrostu jego poziomu. Filtr oleju ma za zadanie zatrzymywać zanieczyszczenia, a jego zanieczyszczenie skutkuje wyłącznie obniżeniem efektywności smarowania. Zużycie czopów wału korbowego wpływa na luz i może powodować wycieki oleju, ale nie ma bezpośredniego wpływu na wzrost poziomu oleju. W przypadku uszkodzenia pompy olejowej, mogłoby to prowadzić do obniżenia ciśnienia oleju, co także nie jest związane z jego wzrostem. W praktyce, problemy z podzespołami silnika mogą być mylnie interpretowane ze względu na niewystarczającą wiedzę na temat ich funkcji. Aby uniknąć takich błędów myślowych, ważne jest zrozumienie, że różne usterki silnika mają różne objawy, a ich diagnozowanie wymaga znajomości mechaniki i zastosowania odpowiednich narzędzi diagnostycznych. Standardy branżowe sugerują stosowanie systematycznych procedur diagnostycznych w celu prawidłowego zidentyfikowania przyczyny problemów, co jest kluczowe dla zapewnienia bezawaryjnej pracy silników.

Pytanie 36

Woda używana do mycia aut w myjni musi być odprowadzana

A. bezpośrednio do systemu kanalizacji komunalnej
B. do wykopu w ziemi na zewnątrz myjni
C. bezpośrednio do kanalizacji deszczowej
D. do separatorów ściekowych
Odpowiedź "do separatorów ściekowych" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi ochrony środowiska oraz zarządzania wodami, woda używana w myjniach samochodowych, która zawiera zanieczyszczenia chemiczne, takie jak detergenty, oleje czy inne substancje szkodliwe, powinna być odpowiednio przetwarzana przed jej odprowadzeniem do systemu wodno-kanalizacyjnego. Separatory ściekowe są urządzeniami zaprojektowanymi w celu oddzielania zanieczyszczeń od wody, co pozwala na ich bezpieczne usunięcie oraz minimalizowanie wpływu na środowisko. Przykładem zastosowania separatorów jest ich obecność w myjniach, które wykorzystują wodę pod ciśnieniem do czyszczenia samochodów, gdzie zanieczyszczenia mogą być znaczne. Prawidłowe korzystanie z separatorów jest nie tylko zgodne z przepisami, ale także sprzyja zrównoważonemu rozwojowi, chroniąc lokalne wody gruntowe oraz ekosystemy przed zanieczyszczeniem.

Pytanie 37

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. całkowitej cylindra do objętości skokowej
B. skokowej do objętości całkowitej cylindra
C. całkowitej cylindra do objętości komory spalania
D. komory spalania do objętości całkowitej cylindra
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.

Pytanie 38

Parametrem związanym z geometrią kół nie jest

A. kąt nachylenia sworznia zwrotnicy
B. zbieżność kół
C. ciśnienie w ogumieniu
D. kąt wyprzedzenia sworznia zwrotnicy
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 39

Podczas naprawy układu hamulcowego pojazdu obowiązkowo należy

A. zawsze wymieniać klocki hamulcowe na nowe
B. sprawdzić ciśnienie w oponach pod kątem bezpiecznej jazdy
C. odpowietrzyć układ po wymianie płynu hamulcowego
D. ustawić geometrię kół, jeśli to konieczne po naprawie zawieszenia
Podczas naprawy układu hamulcowego nie ma obowiązku zawsze wymieniać klocków hamulcowych, chyba że ich stan tego wymaga. Klocki powinny być wymieniane zgodnie z ich zużyciem, a nie automatycznie przy każdej naprawie. To często spotykany błąd, że każdy serwis wymaga wymiany klocków, co może prowadzić do niepotrzebnych kosztów. Sprawdzenie ciśnienia w oponach jest ważne dla ogólnego bezpieczeństwa pojazdu, ale nie jest bezpośrednio powiązane z naprawą układu hamulcowego. To element rutynowej konserwacji, który powinien być wykonywany regularnie, ale nie jest związany z samą naprawą hamulców. Ustawienie geometrii kół jest ważne, ale jest zazwyczaj związane z naprawą zawieszenia, a nie samych hamulców. Geometria kół wpływa na prowadzenie pojazdu i zużycie opon, natomiast sama naprawa układu hamulcowego zazwyczaj nie wymaga ponownego ustawienia geometrii, chyba że doszło do wymiany elementów zawieszenia, które mogłyby wpłynąć na ustawienie kół. To typowe nieporozumienie, że każda praca przy układzie hamulcowym wymaga regulacji geometrii.

Pytanie 40

Materiał charakteryzujący się dużym współczynnikiem przewodzenia ciepła

A. szybko się nagrzewa i szybko chłodzi.
B. długo się nagrzewa i szybko chłodzi.
C. długo się nagrzewa i długo chłodzi.
D. szybko się nagrzewa i długo chłodzi.
W przypadku materiałów o wysokim współczynniku przewodnictwa ciepła, błędne jest twierdzenie, że długo się nagrzewają i długo stygną. Takie stwierdzenia opierają się na nieporozumieniu dotyczącym zachowania się tych materiałów w kontekście wymiany ciepła. Materiały charakteryzujące się niskim przewodnictwem cieplnym, takie jak drewno czy plastik, rzeczywiście mogą nagrzewać się wolniej i dłużej utrzymywać ciepło, ale materiały o wysokiej przewodności cieplnej działają odwrotnie. Wysoka przewodność cieplna oznacza, że energia cieplna szybko przemieszcza się przez materiał, co skutkuje jego szybkim nagrzewaniem się oraz równie szybkim chłodzeniem, gdy źródło ciepła zostaje usunięte. Użytkownicy mogą błędnie sądzić, że im materiał jest bardziej izolacyjny, tym lepiej sprawdzi się w sytuacjach wymagających szybkiej reakcji na zmiany temperatury, co jest nieprawdziwe. W rzeczywistości efektywność w takich zastosowaniach można osiągnąć tylko dzięki zastosowaniu materiałów o wysokim współczynniku przewodnictwa cieplnego, które zapewniają szybki transfer ciepła. W kontekście inżynieryjnym, takie myślenie może prowadzić do nieefektywnych projektów, gdzie materiały nie są dobierane zgodnie z ich właściwościami termicznymi, co w konsekwencji obniża wydajność systemów grzewczych i chłodniczych. Dlatego kluczowe jest zrozumienie, że wybór odpowiednich materiałów powinien opierać się na ich rzeczywistych właściwościach termicznych, a nie na intuicyjnych skojarzeniach związanych z ciepłem i temperaturą.