Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 maja 2025 14:12
  • Data zakończenia: 7 maja 2025 14:25

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Wprowadzenie przewodu do zacisku, delikatne wygięcia oraz wykonanie oczka na końcu przewodu z żyłą z drutu miedzianego, realizuje się cęgami

A. do cięcia bocznymi
B. uniwersalnymi
C. spiczastymi
D. do cięcia czołowymi
Cęgi spiczaste, znane też jako cęgi z długimi końcówkami, to narzędzie, które świetnie sprawdza się przy precyzyjnym wkładaniu przewodów do zacisków i robieniu oczek na końcówkach. Ich budowa pozwala na łatwe manewrowanie w ciasnych miejscach, co naprawdę jest ważne, gdy pracujesz z małymi elementami elektronicznymi. W praktyce, dzięki użyciu cęgów spiczastych, możesz dokładnie wygiąć przewody, co zapobiegnie ich uszkodzeniu i sprawi, że połączenia będą nie tylko estetyczne, ale i funkcjonalne. W branży często podkreśla się, jak istotne jest dobieranie odpowiednich narzędzi do konkretnych zadań, a cęgi spiczaste pasują tutaj idealnie. A jeśli chodzi o robienie oczek, to też zwiększa bezpieczeństwo połączeń, bo dobrze zrobione oczka zmniejszają ryzyko przetarcia izolacji i zwarć. Pamiętaj, że przy pracy z miedzianymi przewodami warto stosować właściwe techniki, żeby nie wykrzywiać ich i zapewnić trwałość połączeń.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Odzież ochronna
B. Buty ochronne
C. Rękawice ochronne
D. Okulary ochronne
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. stopić je w miejscu zetknięcia bez użycia spoiwa.
B. stopić je w miejscu styku z użyciem spoiwa.
C. wprowadzić płynne spoiwo pomiędzy te elementy.
D. docisnąć je podczas podgrzewania miejsca łączenia.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 5,77 A
B. 13,33 A
C. 10,00 A
D. 7,70 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 23

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. hallotron
B. pirometr
C. tensometr
D. szczelinomierz
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez podgrzewanie
B. absorcyjny
C. poprzez schładzanie
D. adsorpcyjny
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 26

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
B. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
C. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
D. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. prostowników
B. generatorów
C. zasilaczy
D. stabilizatorów
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Nasadowego
C. Imbusowego
D. Płaskiego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. skuteczną
B. maksymalną
C. chwilową
D. średnią
Woltomierz w trybie pracy AC wskazuje wartość skuteczną napięcia elektrycznego, co oznacza, że mierzy on efektywną wartość napięcia, która generuje taką samą moc w obciążeniu rezystancyjnym, jak napięcie stałe. Wartość skuteczna, oznaczana jako Ueff, jest istotna w obliczeniach związanych z systemami zasilania i elektrycznymi układami energetycznymi, ponieważ pozwala na realne oszacowanie ilości energii dostarczanej do urządzenia. Na przykład, w domowych instalacjach elektrycznych napięcie zmienne (AC) o wartości skutecznej 230 V odpowiada napięciu stałemu 230 V pod względem generowanej mocy. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektowaniu układów zasilania oraz w obliczeniach związanych z mocą czynna i bierną. Zgodnie z normami IEC 61010, pomiar wartości skutecznej jest kluczowy dla zapewnienia bezpieczeństwa i efektywności układów elektrycznych. Warto również dodać, że woltomierze cyfrowe często korzystają z układów pomiarowych, które są w stanie precyzyjnie obliczyć wartość skuteczną, nawet w obecności zniekształceń harmonicznych.

Pytanie 39

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Dławiący
C. Regulacyjny
D. Zwrotny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.