Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 maja 2025 17:21
  • Data zakończenia: 21 maja 2025 17:36

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. brak podłączenia dwóch faz
C. brak podłączenia jednej fazy
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 2

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przepięciem
B. zwarciem
C. przeciążeniem
D. porażeniem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 3

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. drutu pokrytego gumą
B. linki pokrytej gumą
C. drutu pokrytego polwinitem
D. linki pokrytej polwinitem
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 4

Co oznacza przeciążenie instalacji elektrycznej?

A. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
B. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
C. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
D. Przekroczeniu wartości prądu znamionowego danej instalacji
Wielu ludzi myli przeciążenie z innymi sprawami, co często prowadzi do nieporozumień, jeśli chodzi o bezpieczeństwo w elektryce. Na przykład, podłączenie dwóch faz razem to nie to samo co przeciążenie, ale może doprowadzić do poważnych awarii, jak zwarcia, które mogą zaszkodzić urządzeniom. Zjawisko fali przepięciowej po burzy to zupełnie co innego i dotyczy nagłych skoków napięcia, a nie prądu. Takie przepięcia mogą uszkodzić sprzęt, lecz nie mają nic wspólnego z przeciążeniem, które dotyczy prądu, a nie napięcia. Również nagłe zmiany napięcia w sieci nie są tym samym co przeciążenie, bo to drugie bierze się z zbyt dużego poboru prądu, a nie z jego napięcia. Zrozumienie tych różnic jest ważne dla tych, którzy projektują i dbają o instalacje elektryczne, żeby nie narażać się na ryzyko poważnych awarii i zagrożeń. Przy tworzeniu instalacji warto trzymać się norm jak PN-EN 61000, które mówią o obciążeniach prądowych oraz o tym, jak unikać przepięć.

Pytanie 5

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SPZ
B. SCO
C. SRN
D. SZR
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 6

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Twornika
B. Komutacyjnego
C. Kompensacyjnego
D. Wzbudzenia
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 7

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka imbusowego.
B. Wkrętaka płaskiego.
C. Szczypiec typu Segera.
D. Szczypiec uniwersalnych.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 8

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Jednodrutowe
B. Wielodrutowe
C. Sektorowe
D. Płaskie
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 9

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Weryfikacja braku zwarć międzyzwojowych
B. Sprawdzenie kondycji wycinków komutatora
C. Pomiar rezystancji izolacji
D. Wyważanie
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 10

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Sprawdzanie wyłączników różnicowoprądowych.
B. Badanie kolejności faz.
C. Lokalizacja przewodów pod tynkiem.
D. Pomiar rezystancji uziemienia.
Odpowiedzi, które nie wskazują na funkcję testera wyłączników różnicowoprądowych, mogą prowadzić do wielu nieporozumień dotyczących zastosowania tego przyrządu. Pomiar rezystancji uziemienia, na przykład, to proces, który polega na ocenie skuteczności systemu uziemiającego w celu ochrony przed wyładowaniami elektrycznymi. Choć jest to ważne zadanie w kontekście bezpieczeństwa elektrycznego, nie jest to funkcja testera różnicowoprądowego. Podobnie, lokalizacja przewodów pod tynkiem wymaga użycia innych narzędzi, takich jak detektory przewodów, które są zaprojektowane do identyfikacji położenia kabli i rur w ścianach, a nie do testowania wyłączników. Z kolei badanie kolejności faz jest związane z analizą instalacji trójfazowych, gdzie ważne jest, aby odpowiednia sekwencja zasilania była zachowana dla poprawnej pracy urządzeń. Takie pomyłki mogą wynikać z niezrozumienia podstawowych funkcji urządzeń elektrycznych oraz ich zastosowań w praktyce. Właściwe rozpoznawanie i stosowanie narzędzi, jak i znajomość ich funkcji jest kluczowe dla profesjonalnego podejścia do instalacji elektrycznych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 11

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Poluzowanie śruby mocującej w puszce
B. Wzrost napięcia zasilającego na skutek przepięcia
C. Zbyt duży przekrój używanego przewodu
D. Niewystarczająca wartość prądu roboczego
Poluzowanie się śruby zacisku w puszce rozgałęźnej to jedna z najczęstszych przyczyn zwęglenia izolacji przewodów. Gdy śruba zacisku nie jest odpowiednio dokręcona, może dojść do niewłaściwego kontaktu między przewodem a zaciskiem. Taki luźny kontakt generuje dodatkowe ciepło, co w dłuższej perspektywie prowadzi do degradacji materiałów izolacyjnych. W praktyce, w sytuacji gdy przewód nie jest stabilnie zamocowany, może wystąpić także arczenie, co dodatkowo zwiększa ryzyko uszkodzenia izolacji. Z tego powodu, podczas instalacji elektrycznych, kluczowe jest przestrzeganie standardów dotyczących momentu dokręcenia oraz regularna kontrola stanu złącz. Należy również zwrócić uwagę na jakość używanych materiałów, które powinny spełniać normy PN-EN 60947-1 oraz PN-IEC 60364. Regularne przeglądy mogą pomóc w identyfikacji potencjalnych problemów zanim staną się one poważne, a tym samym zwiększyć bezpieczeństwo instalacji.

Pytanie 12

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. prawidłowe działanie wyłącznika
B. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
C. niemożność załączenia wyłącznika pod obciążeniem
D. brak możliwości zadziałania załączonego wyłącznika
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 13

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Temperaturę barwową światła.
B. Luminancję.
C. Natężenie oświetlenia.
D. Światłość.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 14

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Pomocniczych
B. Przesyłowych
C. Odbiorczych
D. Wytwórczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 15

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Ściągacz izolacji
B. Poziomnica
C. Piła do metalu
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 16

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Pomiar impedancji w pętli zwarciowej
C. Weryfikacja stanu izolacji podłóg
D. Sprawdzanie wyłącznika różnicowoprądowego
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 17

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
D. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 18

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 16 A, charakterystyka C, krotność In = 5 do 10
B. In = 6 A, charakterystyka C, krotność In = 5 do 10
C. In = 6 A, charakterystyka B, krotność In = 3 do 5
D. In = 16 A, charakterystyka B, krotność In = 3 do 5
Wybór wyłączników nadprądowych dla silników trójfazowych wymaga zrozumienia kilku kluczowych aspektów, które niestety nie zostały uwzględnione w niepoprawnych odpowiedziach. Po pierwsze, wyłącznik o prądzie znamionowym 16 A jest zdecydowanie zbyt wysoki dla silnika o prądzie znamionowym 5,5 A. Taki wybór może prowadzić do braku odpowiedniego zabezpieczenia obwodu, co skutkuje ryzykiem uszkodzenia silnika w przypadku przeciążenia lub zwarcia. Wyłącznik powinien być dostosowany do wartości prądu roboczego, aby szybko reagował na niebezpieczne warunki. Kolejnym aspektem jest charakterystyka wyłącznika. Wybór charakterystyki B jest niewłaściwy, ponieważ jest ona zaprojektowana tak, aby zadziałać przy znacznie mniejszych prądach rozruchowych, co może prowadzić do fałszywych zadziałań podczas normalnej pracy silnika. Silniki klatkowe, zwłaszcza podczas rozruchu, mogą generować wysokie prądy, a charakterystyka C jest odpowiednia do ich tolerowania. Ponadto, krotności In w przedziale 3 do 5 mogą nie uwzględniać wszystkich wymagań bezpieczeństwa i wydajności. W praktyce, niewłaściwe dobranie wyłącznika może prowadzić do częstych awarii instalacji oraz zwiększonego ryzyka uszkodzenia urządzeń. Dlatego kluczowe jest przestrzeganie norm i zasad doboru zabezpieczeń, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 19

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Induktorowy miernik uziemień
B. Miernik pętli zwarcia
C. Megaomomierz
D. Omomierz
Megaomomierz jest specjalistycznym urządzeniem zaprojektowanym do pomiaru wysokiej rezystancji izolacji, co czyni go idealnym narzędziem do oceny stanu izolacji przewodów elektrycznych. W przeciwieństwie do zwykłych omomierzy, które mierzą rezystancję w zakresie niskich wartości, megaomomierz generuje napięcia próbne rzędu kilkuset woltów, co pozwala na dokładne określenie jakości izolacji. Przykładowo, podczas testowania instalacji elektrycznych w budynkach, użycie megaomomierza pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Zastosowanie tego urządzenia jest zgodne z normami IEC 61010 oraz IEC 61557, które definiują wymagania dotyczące bezpieczeństwa i wydajności tego typu pomiarów. Regularne sprawdzanie rezystancji izolacji za pomocą megaomomierza jest kluczowym elementem utrzymania bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 20

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Przepięcie
C. Prąd błądzący
D. Zwarcie bezimpedancyjne
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 21

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 22

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. urządzeń półprzewodnikowych przed zwarciami
B. przewodów przed przeciążeniami oraz zwarciami
C. urządzeń półprzewodnikowych przed przeciążeniami
D. silników przed przeciążeniami oraz zwarciami
Przy wyborze wkładki topikowej bezpiecznika ważne jest zrozumienie ich specyfikacji oraz przeznaczenia. Odpowiedzi sugerujące, że wkładka gL zabezpiecza silniki przed przeciążeniem i zwarciami, są mylące, ponieważ silniki wymagają specjalnych wkładek, które mogą radzić sobie z chwilowymi prądami rozruchowymi. Odpowiedzi dotyczące zabezpieczenia urządzeń półprzewodnikowych również są nietrafne. Urządzenia te wymagają wkładek o specyficznych charakterystykach, takich jak gG, które są lepiej dostosowane do ochrony przed impulsywnymi prądami zwarciowymi typowymi dla takich urządzeń. W przypadku przewodów wkładki gL oferują niezawodne zabezpieczenie, jednak proponowanie ich użycia w kontekście silników czy półprzewodników dowodzi braku zrozumienia różnorodności typów bezpieczników oraz ich specyficznych zastosowań. Niezrozumienie tych różnic może prowadzić do zastosowania niewłaściwych zabezpieczeń, co z kolei może skutkować poważnymi uszkodzeniami instalacji elektrycznej oraz zagrażać bezpieczeństwu użytkowników. W przemyśle i instalacjach elektrycznych ważne jest stosowanie odpowiednich elementów zabezpieczających zgodnie z zaleceniami producentów oraz normami, co w praktyce oznacza właściwy dobór bezpieczników do specyfiki chronionych obwodów.

Pytanie 23

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód ochronny
B. Przewód uziemiający
C. Przewód neutralny
D. Przewód fazowy
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 24

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Wyłącznik
B. Rozłącznik
C. Odłącznik
D. Stycznik
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 25

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. OMY
B. YKY
C. AsXSn
D. GsLGs
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 26

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. aM
C. gG
D. aL
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 27

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
B. Minimalny przekrój przewodów podłączonych do zacisków
C. Klasę ochronności przed porażeniem energią elektryczną
D. Najwyższą temperaturę otoczenia podczas eksploatacji
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 28

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
B. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
Zalecenia dotyczące rozdzielenia obwodów oświetleniowych od gniazd wtyczkowych oraz zasilania gniazd wtyczkowych w kuchni z osobnego obwodu są zgodne z obowiązującymi standardami i dobrymi praktykami w zakresie projektowania instalacji elektrycznych. Rozdzielenie obwodów ma kluczowe znaczenie z punktu widzenia bezpieczeństwa; obwody oświetleniowe i gniazdowe powinny być niezależne, aby w przypadku awarii jednego z obwodów, drugi mógł funkcjonować bez zakłóceń. Gniazda w kuchni, ze względu na dużą moc odbiorników, wymagają osobnego zasilania, co jest zgodne z zaleceniami normy PN-IEC 60364-7-701, która wskazuje na ryzyko przeciążenia obwodów, a także potencjalne niebezpieczeństwo porażenia prądem. Zasilanie gniazd wtyczkowych w pojedynczym pomieszczeniu z osobnego obwodu jest błędnym podejściem, gdyż w praktyce prowadzi do nieefektywnego wykorzystania przestrzeni oraz zwiększenia kosztów instalacyjnych. W przypadku standardowych mieszkań, stosuje się obwody ogólne, które obejmują więcej niż jedno pomieszczenie, co umożliwia bardziej elastyczne i ekonomiczne podejście do projektowania instalacji. Typowym błędem w myśleniu o instalacjach elektrycznych jest skupienie się na indywidualnych potrzebach poszczególnych pomieszczeń, zamiast analizowania efektywności całego systemu oraz jego zdolności do zaspokojenia wymagań użytkowników.

Pytanie 29

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. odłącznika
C. wyłącznika nadprądowego
D. wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 30

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Rtęciowy.
B. Wolframowy.
C. Halogenowy.
D. Ledowy.
Wybór żarówki wolframowej, rtęciowej lub halogenowej jako odpowiedzi sugeruje pewne nieporozumienia dotyczące technologii oświetleniowej. Żarówki wolframowe, choć kiedyś były powszechnie stosowane, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością, wynoszącą średnio około 1000 godzin. Emitują one dużą ilość ciepła, co sprawia, że są mniej praktyczne w zastosowaniach wymagających długotrwałego użytkowania. Z kolei żarówki rtęciowe, wykorzystywane głównie w oświetleniu przemysłowym i ulicznym, mają swoje ograniczenia związane z zawartością rtęci, co czyni je zagrożeniem dla środowiska. Ich zastosowanie w domach jest nie tylko niepraktyczne, ale także niebezpieczne. Halogenowe żarówki, będące rozwinięciem technologii wolframowej, oferują nieco lepszą efektywność, ale nadal nie dorównują żarówkom LED pod względem oszczędności energii oraz żywotności. Typowe błędy myślowe, które mogą prowadzić do wyboru tych opcji, to przekonanie, że tradycyjne źródła światła są wystarczające do zaspokojenia potrzeb oświetleniowych, ignorując przy tym ich negatywny wpływ na rachunki za energię oraz środowisko. W praktyce, na podstawie badań i analiz branżowych, zaleca się stosowanie żarówek LED jako najbardziej efektywnej i ekologicznej opcji oświetleniowej, dostosowanej do współczesnych standardów.

Pytanie 31

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 6,0 Ω
B. 1,3 Ω
C. 166,7 Ω
D. 766,7 Ω
Wybór wartości różnych rezystancji uziemienia, takich jak 766,7 Ω, 6,0 Ω czy 1,3 Ω, wskazuje na nieporozumienie dotyczące zasadności obliczeń i norm bezpieczeństwa związanych z instalacjami elektrycznymi. Wartość 766,7 Ω jest zbyt wysoka, co oznacza, że w przypadku uszkodzenia izolacji, prąd różnicowy nie zostanie skutecznie odłączony, co stwarza ryzyko porażenia. Z kolei 6,0 Ω i 1,3 Ω są nieadekwatne w kontekście wymaganej maksymalnej rezystancji dla wyłącznika różnicowoprądowego o tak dużym prądzie różnicowym. W praktyce, zbyt niska rezystancja może prowadzić do nieprawidłowego działania systemu ochrony i fałszywych wyzwalań, co jest nie do przyjęcia w instalacjach elektrycznych. Właściwe zrozumienie tego zagadnienia wymaga znajomości wzorów na obliczanie rezystancji uziemienia oraz znajomości zależności między napięciem dotykowym, prądem różnicowym i rezystancją. Każda z tych wartości odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji, a ich niewłaściwe dobieranie może prowadzić do nr. 1 zagrożeń w elektryczności, jakim jest porażenie prądem. Wartości rezystancji powinny być starannie dobierane zgodnie z zaleceniami norm, a ich zrozumienie jest niezbędne dla każdego inżyniera zajmującego się projektowaniem i wdrażaniem instalacji elektrycznych.

Pytanie 32

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. 0
C. II
D. I
Oprawa oświetleniowa oznaczona symbolem klasy ochronności I zapewnia wysoki poziom bezpieczeństwa w użytkowaniu. Klasa ta charakteryzuje się posiadaniem podstawowej izolacji oraz dodatkowym przewodem ochronnym, co pozwala na skuteczne odprowadzenie ewentualnych prądów upływowych do ziemi. Dzięki temu, w przypadku uszkodzenia izolacji, metalowe elementy oprawy nie stają się źródłem zagrożenia dla użytkowników. Przykładem zastosowania tej klasy są oprawy stosowane w miejscach narażonych na wilgoć, takich jak łazienki czy zewnętrzne oświetlenie ogrodowe. Zgodnie z normami PN-EN 60598-1, urządzenia oznaczone klasą I muszą być również regularnie kontrolowane pod kątem stanu przewodu ochronnego oraz integralności izolacji. Takie działania pomagają w utrzymaniu bezpieczeństwa i zgodności z przepisami BHP, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 33

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. trzy lata
B. rok
C. pięć lat
D. dwa lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 34

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Pa
B. kgˑm2
C. Nˑm
D. kg
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 35

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. tylko przewody fazowe
B. wszystkie przewody czynne
C. przewody fazowe oraz ochronny
D. wyłącznie przewód neutralny
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 36

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Krzyżowego
C. Schodowego
D. Hotelowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 37

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Impedancję pętli zwarcia.
C. Chwilową moc obciążenia.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 38

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i trzy zaciski
B. Jeden klawisz i trzy zaciski
C. Dwa klawisze i cztery zaciski
D. Jeden klawisz i cztery zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 39

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Zdalne sterowanie obwodami elektrycznymi
B. Zmniejszenie zużycia energii
C. Kontrola temperatury przewodów
D. Ochrona przed przeciążeniami
W instalacjach elektrycznych przekaźniki nie służą jako ochrona przed przeciążeniami. Funkcję tę pełnią zabezpieczenia nadprądowe, takie jak wyłączniki nadprądowe czy bezpieczniki, które są specjalnie zaprojektowane do wykrywania przeciążeń i zwarć, odłączając zasilanie, aby zapobiec uszkodzeniom sprzętu i instalacji. Zmniejszenie zużycia energii to również nie jest główna funkcja przekaźników. Choć użycie przekaźników może pośrednio wpływać na efektywność energetyczną poprzez optymalizację pracy urządzeń, ich podstawowa rola związana jest z funkcjami sterowania, a nie z ograniczaniem zużycia energii. Kontrola temperatury przewodów to kolejna niepoprawna odpowiedź. Przekaźniki nie są używane do monitorowania temperatury przewodów – tę funkcję mogą pełnić inne urządzenia, takie jak termostaty czy czujniki temperatury, które bezpośrednio mierzą i reagują na zmiany temperatury. Błędne przypisanie tych funkcji przekaźnikowi może wynikać z niepełnego zrozumienia zasad działania różnych komponentów w instalacjach elektrycznych. Zrozumienie konkretnej roli każdego elementu systemu jest kluczowe dla skutecznego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 40

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.