Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 maja 2025 11:32
  • Data zakończenia: 20 maja 2025 11:55

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wymienić łożyska silnika
B. wycentrować wirnik w stojanie
C. wyprostować skrzywiony wentylator lub osłonę
D. dokręcić śruby mocujące osłonę wentylatora
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 2

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. mikroskopu technicznego
C. przymiaru kreskowego
D. śruby mikrometrycznej
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 3

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. megaomomierzem
B. technicznym mostkiem Thomsona
C. omomierzem
D. laboratoryjnym mostkiem Thomsona
Pomiary rezystancji izolacji instalacji elektrycznej wykonuje się za pomocą megaomomierza, który jest specjalistycznym urządzeniem zaprojektowanym do oceny stanu izolacji. Megaomomierze działają na zasadzie generowania wysokiego napięcia, co pozwala na dokładne zmierzenie rezystancji izolacyjnej. Zgodnie z normami PN-EN 61557, pomiar rezystancji izolacji jest kluczowym elementem w ocenie bezpieczeństwa instalacji elektrycznych. W praktyce, podczas regularnych kontroli, technicy zalecają wykonywanie takich pomiarów co najmniej raz na rok, aby zminimalizować ryzyko awarii spowodowanych uszkodzeniem izolacji. Pomiary te są szczególnie istotne w obiektach przemysłowych, gdzie występują różne czynniki zewnętrzne mogące wpływać na stan izolacji, takie jak wilgoć, zanieczyszczenia czy zmiany temperatury. W przypadku stwierdzenia niskiej rezystancji, może to wskazywać na degradację materiału izolacyjnego, co wymaga podjęcia działań naprawczych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W procesie TIG stosuje się technikę spawania

A. elektrodą wolframową w osłonie argonowej
B. elektrodą topliwą w osłonie dwutlenku węgla
C. łukiem plazmowym
D. strumieniem elektronów
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 8

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. średnia napięcia wyznaczona dla półokresu
B. średnia napięcia wyznaczona dla okresu
C. maksymalna napięcia podzielona przez √2
D. maksymalna napięcia podzielona przez √3
Wartości napięcia przemiennego mogą być mylone z różnymi parametrami, co prowadzi do nieprawidłowych konkluzji. Pierwszą z takich koncepcji jest pomylenie średniej wartości napięcia wyznaczonej dla półokresu z wartością skuteczną. Średnia wartość napięcia dla półokresu sinusoidalnego nie odpowiada wartością, która jest używana w praktycznych zastosowaniach elektrycznych, ponieważ nie może odzwierciedlić energii, jaką dostarcza prąd. Dodatkowo, średnia wartość napięcia dla okresu nie jest stosowana w kontekście napięcia przemiennego, ponieważ dla sinusoidy obie wartości powracają do zera, co nie jest użyteczne w inżynierii elektrycznej. Kolejnymi błędami są próby odniesienia maksymalnej wartości napięcia do √3, co w ogóle nie znajduje zastosowania w kontekście typowych obwodów zasilających w zakresie napięcia przemiennego. Zastosowanie √3 odnosi się do napięcia w systemach trójfazowych, a nie jednofazowych, co prowadzi do błędnych obliczeń i niesprawności urządzeń. W praktyce, nieznajomość różnicy między wartościami napięcia skutecznego, maksymalnego i średniego prowadzi do nieprawidłowego doboru urządzeń oraz zagrożeń w instalacjach elektrycznych. Aby uniknąć takich pomyłek, kluczowe jest zrozumienie podstawowych zasad dotyczących parametrów napięcia oraz ich zastosowania w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 9

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Prostownik
C. Falownik
D. Stycznik
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Prostowniki.
B. Stabilizatory.
C. Flip-flopy.
D. Generatory.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić uszczelkę
B. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
C. wymienić membranę
D. zmierzyć rezystancję cewki
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. programatora ze sterownikiem
B. grupy siłowników z modułem rozszerzającym
C. programatora z siłownikiem
D. silnika z pompą hydrauliczną
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. z ograniczeniem czasowym.
B. warunkowo.
C. impulsowo.
D. z opóźnieniem czasowym.
Wybór odpowiedzi, która sugeruje inne metody otwarcia zaworu, opiera się na nieprawidłowym zrozumieniu specyfiki działania systemu Grafcet oraz funkcji poszczególnych typów akcji. Zapis "z ograniczeniem czasowym" wskazywałby na sytuację, w której zawór otwierany jest tylko przez określony czas, co może prowadzić do niepożądanych skutków, takich jak niedostateczne dostarczenie medium lub nadmierne ciśnienie. Takie podejście jest nieefektywne w kontekście precyzyjnego sterowania, które wymaga pełnej kontroli nad czasem działania urządzeń. Ponadto, odpowiedź "warunkowo" sugeruje, że otwarcie zaworu zależy od spełnienia określonych warunków, co w tym kontekście nie znajduje zastosowania, ponieważ zapis jednoznacznie definiuje działanie z opóźnieniem. W sytuacjach, gdy działanie powinno być uzależnione od warunków, stosuje się inne symbole w Grafcet, co może prowadzić do błędów w interpretacji schematów. Odpowiedź "impulsowo" zaprzecza idei opóźnienia, ponieważ sugeruje jednokrotne, krótkotrwałe działanie, co jest niezgodne z wymaganiami stabilnego otwierania zaworu. Ostatnia opcja, "z opóźnieniem czasowym", jest jedyną, która prawidłowo oddaje założenia dotyczące sekwencji działania, a pominięcie tej koncepcji może prowadzić do nieefektywnego i niebezpiecznego zarządzania przepływem w systemach automatyki.

Pytanie 22

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
B. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
C. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC

A. 1 bar.
B. 0,95 bara.
C. 2 bary.
D. 0,75 bara.
Maksymalna wartość podciśnienia, którą może przyjąć zawór, wynosi 0,95 bara, co jest wyraźnie wskazane w tabeli danych znamionowych dla modelu zaworu MS-18-310/2-HN. W praktyce oznacza to, że zawór może efektywnie działać w szerokim zakresie ciśnień, od -0,95 bara do 8 barów. Takie parametry są kluczowe w projektowaniu systemów, w których stosuje się zawory, ponieważ zrozumienie limitów pracy zaworu pozwala na uniknięcie awarii i zapewnienie jego długotrwałej funkcjonalności. Podciśnienie w zakresie 0,95 bara jest typowe w zastosowaniach przemysłowych, takich jak systemy wentylacyjne czy pompy próżniowe, gdzie kontrolowanie ciśnienia ma kluczowe znaczenie dla efektywności operacyjnej. Warto również pamiętać, że przy wyborze zaworu należy kierować się standardami branżowymi, takimi jak norma ISO 9001, które podkreślają znaczenie dokładnych danych technicznych w celu zapewnienia odpowiedniej jakości i bezpieczeństwa pracy urządzeń.

Pytanie 25

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. daloczułkiem.
B. pirometrem.
C. fotometrem.
D. multimetrem.
Pirometr to urządzenie specjalistyczne, które służy do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt, co pozwala na określenie jego temperatury bez konieczności fizycznego kontaktu. Takie podejście jest szczególnie przydatne w sytuacjach, gdy obiekt jest zbyt gorący lub niebezpieczny do dotykania, jak w przypadku pieców przemysłowych czy silników. W praktyce, pirometry są powszechnie stosowane w przemyśle metalurgicznym, spożywczym oraz w energetyce, gdzie precyzyjny pomiar temperatury ma kluczowe znaczenie dla bezpieczeństwa i efektywności procesów. Zgodnie z normami branżowymi, pomiar temperatury za pomocą pirometru powinien być wykonywany w odpowiednich warunkach, co obejmuje m.in. kalibrację urządzenia oraz uwzględnienie współczynnika emisji materiału, który mierzony jest dla uzyskania dokładnych rezultatów. Warto również zauważyć, że pirometry są dostępne w różnych wariantach, w tym ręcznych i stacjonarnych, co zwiększa ich uniwersalność w zastosowaniach przemysłowych.

Pytanie 26

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na odczyt wartości zmierzonych parametrów
B. na wizualizację przebiegu pracy prasy
C. na załączanie i wyłączanie pracy prasy
D. na pomiar parametrów procesowych prasy
Urządzenia HMI w mechatronice, jak na przykład w prasie hydraulicznej, to naprawdę ważny element do komunikacji między operatorem a maszyną. W kontekście tego pytania, HMI umożliwia odczyt wartości zmierzonych parametrów, co jest kluczowe, aby wiedzieć, w jakim stanie pracuje prasa. Dzięki temu operator może lepiej zrozumieć, co się dzieje w trakcie pracy maszyny, bo wizualizacja przebiegu pracy jest bardzo pomocna. Poza tym, HMI pozwala na włączanie i wyłączanie prasy, co jest istotne w automatyzacji. Trzeba jednak pamiętać, że pomiar samych parametrów procesowych przy pomocy HMI nie jest możliwy, bo jego główną rolą jest pokazywanie danych z innych czujników. W praktyce, standardy jak ISO 10218 dla robotów mówią, że HMI powinno być używane do komunikacji, a nie do pomiarów. Zrozumienie tego, jak działa HMI, jest naprawdę kluczowe przy projektowaniu i obsłudze automatyzacji, a także w dbaniu o ergonomię i bezpieczeństwo w pracy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 485
B. IRDA
C. USB
D. RS 232
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 30

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 200 N
B. 20 N
C. 2000 N
D. 2 N
Wybór odpowiedzi innej niż 200 N często wynika z nieprawidłowego zrozumienia podstawowych zasad działania układów hydraulicznych. Warto zauważyć, że siły w takich systemach są ze sobą powiązane poprzez zasadę Pascala, która mówi, że ciśnienie wywierane na ciecz w zamkniętym układzie rozkłada się równomiernie. Niepoprawne odpowiedzi mogą wynikać z błędnych obliczeń lub mylenia jednostek. Na przykład, odpowiedź 20 N sugeruje zbyt małą siłę, co nie odpowiada podniesionemu ciężarowi 20 kN. To zrozumienie jest kluczowe, ponieważ w praktyce oznaczałoby to, że podnośnik nie byłby w stanie podnieść zadanej masy. Odpowiedź 2 N jest wynikiem jeszcze większego niedoszacowania i może wskazywać na nieprawidłowe zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 2000 N również są błędne, ponieważ sugerują, że ciśnienie jest obliczane na podstawie zbyt dużej powierzchni tłoka, co prowadzi do mylnego wyobrażenia o działaniu układu. Kluczowym błędem jest nieuwzględnienie różnicy w powierzchniach tłoków; to właśnie dzięki małemu tłoczkowi pompy uzyskujemy dużą siłę na tłoku roboczym. Dobrą praktyką jest zawsze staranne przeliczenie wszystkich danych, aby upewnić się, że wyniki są zgodne z rzeczywistością oraz przepisami dotyczącymi bezpieczeństwa i skuteczności urządzeń hydraulicznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
D. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Stal niskowęglowa
C. Żeliwo białe
D. Stal wysokowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.