Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 17:30
  • Data zakończenia: 15 maja 2025 17:50

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Na tabliczce znamionowej silnika indukcyjnego symbol "S1" wskazuje na

A. kategorię izolacji uzwojenia
B. typ chłodzenia silnika
C. tryb pracy ciągłej
D. maksymalną temperaturę otoczenia
Symbol "S1" na tabliczce znamionowej silnika indukcyjnego rzeczywiście oznacza pracę ciągłą. W kontekście silników elektrycznych, oznaczenie to sugeruje, że konstrukcja silnika pozwala na jego nieprzerwaną pracę przez dłuższy czas bez ryzyka przegrzania. Silniki oznaczone jako "S1" są projektowane z myślą o osiąganiu nominalnych parametrów, takich jak moc, prąd czy moment obrotowy, w sposób stabilny i efektywny. W praktyce oznacza to, że silniki te można stosować w aplikacjach, gdzie wymagana jest ciągła praca, jak na przykład w wentylatorach, pompach czy kompresorach. Zgodnie z normą IEC 60034-1 tryby pracy silników elektrycznych są precyzyjnie zdefiniowane, co pozwala inżynierom i projektantom na wybór odpowiednich urządzeń do konkretnych zastosowań, minimalizując ryzyko awarii oraz utrzymując wysoką efektywność energetyczną.

Pytanie 6

Aby dokładnie ustalić kątową pozycję, przemieszczenie oraz zliczyć obroty silnika w systemie mechatronicznym, używa się

A. licznik
B. akcelerometr
C. enkoder
D. czujnik ultradźwiękowy
Enkoder jest urządzeniem, które odgrywa kluczową rolę w pomiarze pozycji kątowej oraz zliczaniu obrotów silników w systemach mechatronicznych. Działa na zasadzie konwersji ruchu mechanicznego na sygnał elektryczny, który może być interpretowany przez systemy sterujące. Przykładem zastosowania enkoderów jest w automatyce przemysłowej, gdzie precyzyjne pozycjonowanie elementów roboczych jest niezbędne, na przykład w robotach przemysłowych czy maszynach CNC. Enkodery można podzielić na inkrementalne i absolutne, z których każdy typ ma swoje unikalne zastosowania. Standardy takie jak IEC 61131-2 definiują wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich interoperacyjność i niezawodność w systemach automatyki. Dobrą praktyką jest regularne kalibrowanie enkoderów, aby zapewnić ich dokładność i stabilność działania w długoterminowych zastosowaniach. Warto również zwrócić uwagę na dobór odpowiednich enkoderów w zależności od wymagań aplikacji, co może znacząco wpłynąć na wydajność całego układu.

Pytanie 7

Jakie niekorzystne zmiany w właściwościach cieczy hydraulicznych można zidentyfikować bezpośrednio w miejscu eksploatacji układu?

A. Obecność wody oraz lepkość cieczy
B. Starzenie termiczne oraz obecność powietrza
C. Zawartość cząsteczek metali i wartość kwasowa
D. Zawartość osadów i wartość zasadowa
Starzenie termiczne i obecność powietrza to zmiany, które można łatwo wykryć w cieczy hydraulicznej bez konieczności przeprowadzania skomplikowanych testów laboratoryjnych. Starzenie termiczne objawia się m.in. poprzez zmianę koloru cieczy, co może wskazywać na degradację jej właściwości. Z kolei obecność powietrza jest zauważalna przez tworzenie się bąbelków, co może prowadzić do poważnych problemów, takich jak kawitacja. Przykładem zastosowania tej wiedzy jest regularne monitorowanie cieczy hydraulicznych w systemach maszynowych, co pozwala na wczesne wykrywanie problemów i zapobieganie awariom. Zgodnie z zaleceniami branżowymi, takie jak ISO 4406, monitorowanie jakości cieczy jest kluczowe dla utrzymania efektywności układów hydraulicznych. Wykrywanie starzenia termicznego i obecności powietrza jest zatem istotnym krokiem w zapewnieniu niezawodności i długowieczności systemów hydraulicznych, co jest korzystne zarówno z perspektywy operacyjnej, jak i ekonomicznej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. R
B. N
C. D
D. S
Kwalifikator "N" w metodzie SFC (Sequential Function Chart) oznacza brak kwalifikatora, co oznacza, że nie ma dodatkowego opisu dla danego działania. Jego pominięcie nie wpływa na sposób realizacji bloku akcji, ponieważ nie dodaje on żadnych warunków ani szczegółów, które musiałyby być brane pod uwagę w procesie wykonawczym. W praktyce, stosowanie kwalifikatorów w SFC jest kluczowe dla zapewnienia przejrzystości i zrozumiałości diagramów, jednak w przypadku "N" mamy do czynienia z sytuacją, w której blok akcji działa w taki sam sposób, niezależnie od tego, czy ten kwalifikator jest obecny, czy nie. W branży automatyki przemysłowej, znajomość i umiejętność stosowania kwalifikatorów w SFC jest niezbędna do efektywnego modelowania procesów, co pozwala na łatwiejszą analizę i optymalizację działań. Na przykład, w przypadku zautomatyzowanego procesu pakowania, kwalifikatory mogą pomóc w określeniu, kiedy maszyna powinna przejść do kolejnego etapu, a ich odpowiednie stosowanie zapewnia płynność całej operacji.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. przetrzeć komutator mokrą szmatką
B. oczyścić komutator i wypolerować papierem ściernym
C. wyczyścić komutator i szczotki
D. nałożyć na komutator olej lub smar
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 14

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 0,1 dm3/min
B. 0,6 dm3/min
C. 6,0 dm3/min
D. 1,2 dm3/min
Wybór niewłaściwej odpowiedzi na to pytanie może wynikać z kilku typowych błędów myślowych, które często pojawiają się podczas analizy problemów związanych z przepływem oleju w silnikach hydraulicznych. Na przykład, odpowiedzi wskazujące na 1,2 dm3/min, 0,6 dm3/min oraz 0,1 dm3/min mogą wynikać z nieprawidłowego zrozumienia zależności między prędkością obrotową a chłonnością jednostkową. Często zdarza się, że osoby przyjmują zbyt niskie wartości, ignorując fakt, że każdy obrót wymaga określonej ilości oleju. Podczas obliczeń warto pamiętać, że chłonność jednostkowa oznacza, ile oleju silnik potrzebuje na jeden obrót, a nie na całą prędkość obrotową. Z tego powodu wszystkie niskie wartości są mylące, ponieważ nie uwzględniają one rzeczywistego zapotrzebowania na olej przy tak wysokiej prędkości. Kolejnym błędem może być nieprawidłowe przeliczenie jednostek, co również może prowadzić do zaniżenia wartości przepływu. W praktyce hydraulicznej kluczowe jest nie tylko zrozumienie teorii, ale również umiejętność zastosowania jej w rzeczywistych obliczeniach, co ma zasadnicze znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych, gdzie precyzja wydajności ma bezpośredni wpływ na sprawność oraz żywotność urządzeń.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Do zakresu przeglądu technicznego łopatkowych kompresorów powietrza nie należy

A. wymiana manometru w każdym przypadku
B. pomiar poboru energii elektrycznej przez silnik
C. wymiana wkładki sprzęgła bezpośredniego napędu stopnia sprężającego w ustalonym czasie
D. obserwacja poziomu hałasu lub drgań stopnia sprężającego
Wybór odpowiedzi dotyczącej każdorazowej wymiany manometru jako elementu, który nie wchodzi w zakres przeglądu technicznego łopatkowych kompresorów powietrza, jest uzasadniony. Manometr, jako instrument pomiarowy, jest poddawany kalibracji i wymianie w zależności od jego stanu, lecz nie jest to standardowa procedura przeglądowa. Przeglądy techniczne koncentrują się przede wszystkim na monitorowaniu parametrów operacyjnych, takich jak głośność, wibracje oraz pobór prądu przez silnik, co jest kluczowe dla oceny efektywności i bezpieczeństwa pracy urządzenia. W praktyce, regularne sprawdzanie stanu technicznego kompresora powinno obejmować analizę wyników pomiarów, co pozwala na wczesne wykrycie ewentualnych usterek. Standardy branżowe, takie jak normy ISO dotyczące zarządzania jakością, zalecają systematyczne przeglądy wszystkich istotnych komponentów maszyny, aby zapewnić ich długotrwałą funkcjonalność i minimalizować ryzyko awarii. W związku z tym, odpowiedź dotycząca manometru jest poprawna, gdyż jego wymiana nie jest regularnie uwzględniana w standardowych przeglądach technicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. uszkodzenia pompy hydraulicznej
B. zwiększenia tempa działania układu
C. spadku ciśnienia czynnika roboczego
D. intensywnych drgań układu
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 24

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. pompy hydraulicznej
B. siłownika pneumatycznego
C. silnika hydraulicznego
D. sprężarki tłokowej
Podczas oceny sprężarek tłokowych musisz zwrócić uwagę na kilka istotnych parametrów, takich jak moc silnika, liczba cylindrów, stopnie sprężania czy pojemność zbiornika. Te rzeczy są naprawdę ważne w różnych branżach, od klimatyzacji po chłodnictwo. Sprężarka tłokowa działa tak, że tłok w cylindrze przesuwa się, a to właśnie zwiększa ciśnienie gazu. Dzięki takim wskaźnikom jak ciśnienie robocze czy wydajność powietrza inżynierowie mogą dobrać sprzęt do konkretnego zastosowania, gdzie potrzebna jest odpowiednia moc sprężania. Ogólnie znajomość tych parametrów pozwala na lepsze projektowanie i dobór sprężarek, co jest ważne w branży. Rozumienie tych kwestii jest kluczowe, jeśli chcesz, żeby systemy działały efektywnie i były niezawodne.

Pytanie 25

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Upload
B. Erase Memory
C. Download
D. Write
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
B. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
C. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
D. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
Nieprawidłowe odpowiedzi na to pytanie są wynikiem błędnego zrozumienia zasad dotyczących pomiaru ciągłości obwodu ochronnego. W przypadku urządzeń wykonanych w I klasie ochronności, kluczowym elementem zabezpieczeń jest styk ochronny, który ma bezpośredni związek z metalowymi elementami obudowy. Pomiar między stykiem fazowym a metalowymi elementami obudowy jest niewłaściwy, gdyż nie zapewnia sprawdzenia ciągłości obwodu ochronnego, a jedynie może wykazać obecność napięcia w obwodzie zasilającym, co niewiele mówi o bezpieczeństwie użytkowania urządzenia. Ponadto, wykonywanie pomiaru między stykiem ochronnym a stykiem neutralnym wtyczki jest błędne, ponieważ styk neutralny nie pełni roli bezpieczeństwa dla ochrony przed porażeniem. Możliwe jest także, że w przypadku pomiaru między stykiem ochronnym a stykiem fazowym, można uzyskać mylące wyniki, które nie odzwierciedlają stanu rzeczywistego obwodu ochronnego. Istotne jest, aby w takich sytuacjach opierać się na uznanych standardach oraz dobrą praktykę, która nakazuje wykonywanie pomiarów w odpowiednich punktach, aby zapewnić skuteczność ochrony. Warto zwrócić na to uwagę, aby uniknąć niebezpiecznych sytuacji związanych z niewłaściwym użytkowaniem urządzeń elektrycznych.

Pytanie 28

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zmniejszyć zakres histerezy
B. zwiększyć wartość sygnału regulacyjnego
C. zwiększyć zakres histerezy
D. zmniejszyć wartość sygnału zadawania
Zwiększenie szerokości histerezy w regulatorze dwustanowym to naprawdę ważna rzecz, która pomaga ograniczyć częstotliwość oscylacji wokół wartości zadanej. Histereza to jakby strefa, w której regulator nie reaguje na drobne zmiany. To jest dość istotne, zwłaszcza w systemach, gdzie mogą występować małe fluktuacje. Na przykład, w regulacji temperatury pieców przemysłowych to oznacza, że nie będziemy mieć niepotrzebnych reakcji na niewielkie wahania temperatury. Dzięki temu piec nie włącza się i wyłącza ciągle, co jest super dla stabilizacji systemu i poprawy efektywności energetycznej. Z tego, co wiem, według dobrych praktyk inżynieryjnych, większa histereza daje większy komfort i stabilność w działaniu, co idealnie wpisuje się w zasady projektowania regulatorów oraz standardy automatyki przemysłowej.

Pytanie 29

Co obejmuje zakres pomiarowy czujnika?

A. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
B. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
C. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
D. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który składnik gwarantuje stabilne unieruchomienie nurnika pionowo umiejscowionego siłownika w sytuacji awarii hydraulicznego przewodu zasilającego?

A. Hydrauliczny regulator przepływu
B. Zamek hydrauliczny
C. Elektrohydrauliczny zawór proporcjonalny
D. Hydrauliczny zawór różnicowy
Zamek hydrauliczny jest kluczowym elementem w systemach hydraulicznych, który zapewnia unieruchomienie nurnika siłownika w sytuacji awaryjnej, takiej jak uszkodzenie przewodu zasilającego. Działa poprzez zablokowanie przepływu cieczy hydraulicznej, co skutkuje stabilizacją pozycji nurnika. Przy zastosowaniu zamków hydraulicznych w maszynach budowlanych, takich jak dźwigi czy podnośniki, możliwe jest bezpieczne zatrzymanie operacji w przypadku awarii, zapobiegając niebezpiecznym sytuacjom, takim jak nagłe opadanie ładunków. Zgodnie z normami branżowymi, stosowanie zamków hydraulicznych jest zalecane w systemach, gdzie bezpieczeństwo jest priorytetem. Dobrą praktyką jest również regularne testowanie tych zamków w celu zapewnienia ich sprawności i niezawodności w krytycznych momentach pracy. Warto również zwrócić uwagę na odpowiednią konserwację i utrzymanie w dobrym stanie technicznym tych elementów, aby sprostać wysokim wymaganiom operacyjnym.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.