Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 06:16
  • Data zakończenia: 30 maja 2025 06:27

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Korytka kablowe powinny być

A. przyspawane
B. przykręcone
C. zaciskane
D. przyklejone
Odpowiedź 'przykręcić' jest poprawna, ponieważ korytka kablowe do ściany budynku powinny być montowane w sposób zapewniający ich stabilność i trwałość. Przykręcanie korytek do ściany umożliwia ich solidne mocowanie, co jest istotne dla ochrony przewodów elektrycznych przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Do montażu korytek często stosuje się wkręty samowiercące lub wkręty do drewna, w zależności od materiału, z którego wykonana jest ściana. Przykładowo, w przypadku ścian betonowych lub murowanych można użyć kołków rozporowych. Dobrą praktyką jest również wykorzystanie odpowiednich dystansów, które pomogą w utrzymaniu korytka w odpowiedniej odległości od ściany, co sprzyja wentylacji i minimalizuje ryzyko przegrzewania się kabli. Zgodnie z normami, takimi jak PN-IEC 60364, odpowiedni montaż korytek kablowych jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej.

Pytanie 2

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTKSY
B. YTDY
C. OMY
D. UTP
Przewód YTDY jest odpowiedni do łączenia elementów systemu alarmowego ze względu na swoje właściwości. Posiada on podwójne ekranowanie, co zapewnia wysoką odporność na zakłócenia elektromagnetyczne, co jest kluczowe w systemach zabezpieczeń, gdzie jakość sygnału jest kluczowa dla prawidłowego działania. Dzięki zastosowaniu odpowiedniej izolacji przewodów, YTDY skutecznie minimalizuje ryzyko fałszywych alarmów spowodowanych zakłóceniami z innych urządzeń. W praktyce, zastosowanie tego typu przewodów w instalacjach alarmowych pozwala na długodystansowe połączenia, co jest istotne w większych obiektach. Przewody YTDY są również zgodne z normami branżowymi, co czyni je preferowanym wyborem w projektowaniu i wykonawstwie systemów alarmowych. Dzięki zastosowaniu tego typu przewodów, instalacje stają się bardziej niezawodne i efektywne.

Pytanie 3

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku współczynnika prostokątności
B. spadku częstotliwości środkowej fo
C. wzrostu częstotliwości środkowej fo
D. wzrostu współczynnika prostokątności
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 4

Jak powinna przebiegać prawidłowa sekwencja uruchamiania instalacji telewizyjnej?

A. podłączyć kabel antenowy, zaprogramować kanały, uruchomić odbiornik TV
B. zaprogramować kanały, uruchomić odbiornik TV, podłączyć kabel antenowy
C. uruchomić odbiornik TV, zaprogramować kanały, podłączyć kabel antenowy
D. podłączyć kabel antenowy, uruchomić odbiornik TV, zaprogramować kanały
Prawidłowa kolejność uruchomienia instalacji telewizyjnej to podłączenie kabla antenowego, uruchomienie odbiornika TV, a następnie zaprogramowanie kanałów. Zaczynając od podłączenia kabla antenowego, zapewniamy odbiornikowi dostęp do sygnału telewizyjnego, co jest kluczowe, ponieważ bez tego nie będzie on w stanie odebrać żadnych transmisji. Po upewnieniu się, że kabel antenowy jest prawidłowo podłączony, należy uruchomić odbiornik telewizyjny. W momencie włączenia urządzenia, system operacyjny TV inicjuje potrzebne procesy, które umożliwiają dalszą konfigurację. Ostatecznie, programowanie kanałów jest krokiem, który pozwala na dostosowanie odbiornika do preferencji użytkownika i lokalnych dostępnych stacji. Ta sekwencja działa zgodnie z najlepszymi praktykami instalacyjnymi, ponieważ zapewnia logiczny i efektywny proces konfiguracji, co jest zgodne z zaleceniami producentów sprzętu telewizyjnego. Prawidłowe podejście do instalacji wpływa na ogólne doświadczenia użytkownika oraz funkcjonalność urządzenia, co podkreśla znaczenie przestrzegania ustalonych procedur.

Pytanie 5

Na diagramie blokowym struktury wewnętrznej mikroprocesora symbol ALU oznacza

A. mikroprocesor wykonany w technologii krzemowo-aluminiowej
B. jednostkę arytmetyczno-logiczną
C. zewnętrzną pamięć operacyjną
D. rejestr akumulatora
Odpowiedź 'jednostka arytmetyczno-logiczna' (ALU) jest prawidłowa, ponieważ ALU stanowi kluczowy komponent mikroprocesora odpowiedzialny za wykonywanie operacji arytmetycznych, takich jak dodawanie i odejmowanie, oraz operacji logicznych, takich jak AND, OR i NOT. ALU przyjmuje dane wejściowe, wykonuje na nich odpowiednie operacje, a następnie zwraca wyniki. Przykładowo, w procesach obliczeniowych, takich jak obliczanie wartości matematycznych lub przetwarzanie logiki warunkowej w programach, ALU odgrywa nieodzowną rolę. Standardy projektowania mikroprocesorów, takie jak architektura von Neumanna, uwzględniają ALU jako centralny element, co podkreśla jego znaczenie w nowoczesnych systemach komputerowych. Również w kontekście programowania niskopoziomowego, zrozumienie działania ALU pozwala na efektywniejsze pisanie kodu maszynowego i optymalizację algorytmów obliczeniowych.

Pytanie 6

Czujnik, który składa się z elementu wrażliwego na drgania mechaniczne oraz obwodu elektronicznego, to czujnik

A. zalania
B. ruchu
C. magnetyczna
D. wibracyjna
Czujka wibracyjna jest specjalistycznym urządzeniem, które składa się z elementu czułego na drgania mechaniczne oraz układu elektronicznego, który przetwarza sygnały generowane przez te drgania. Działa na zasadzie detekcji wibracji, które mogą być spowodowane ruchem obiektów, uderzeniami lub innymi formami mechanicznych zakłóceń. Przykłady zastosowania czujek wibracyjnych obejmują systemy alarmowe, które monitorują potencjalne intruzje poprzez detekcję nieautoryzowanych drgań w oknach lub drzwiach. W przemyśle, czujki te są używane do monitorowania stanu maszyn i urządzeń, co pozwala na wczesne wykrywanie awarii lub nadmiernego zużycia. Zgodnie z branżowymi standardami, czujki wibracyjne powinny być instalowane w miejscach, gdzie ruch fizyczny może wskazywać na niepożądane zdarzenia, co zwiększa bezpieczeństwo obiektów. Dodatkowo, czujki te mogą być zintegrowane z systemami automatyki budynkowej, co umożliwia automatyczne reagowanie na wykryte drgania, np. poprzez uruchomienie alarmu lub zabezpieczeń.

Pytanie 7

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. wykonania sztucznego oddychania
B. odłączenia osoby od źródła prądu
C. zgłoszenia sytuacji przełożonemu
D. przeprowadzenia masażu serca
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 8

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Stacji lutowniczej
B. Lutownicy transformatorowej
C. Stacji na gorące powietrze
D. Lutownicy oporowej
Kiedy wybierasz inne narzędzia lutownicze, jak lutownica oporowa czy stacja lutownicza, mogą się zdarzyć problemy przy wymianie diod w elektrozaczepach. Lutownica oporowa, wiadomo, też się używa w elektronice, ale nie daje takiej samej kontroli nad temperaturą jak transformatorowa, co jest istotne, bo diody są wrażliwe na ciepło. Stacje lutownicze są lepsze jakościowo, ale też bardziej skomplikowane w obsłudze, co może być problemem dla początkujących. A stacje na gorące powietrze, choć przydatne, nie nadają się do precyzyjnego lutowania małych elementów, bo mogą rozgrzać otoczenie i uszkodzić inne komponenty. Niektórzy mylą sytuacje niskiej i wysokiej temperatury użytkowania, co może prowadzić do złych decyzji przy wyborze narzędzi. W sumie, ważne jest, żeby w odpowiednich sytuacjach sięgać po narzędzia, które są zgodne z branżowymi zaleceniami.

Pytanie 9

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. gwiazdkowym
B. płaskim
C. krzyżowym
D. czworokątnym
Wkręty z łbem oznaczonym symbolem PH, czyli Phillips, charakteryzują się krzyżowym rowkiem, który pozwala na lepsze dopasowanie wkrętaka. Użycie wkrętaka krzyżowego pozwala na przekazywanie większego momentu obrotowego, co ułatwia wkręcanie i odkręcanie. Dzięki specyficznej konstrukcji łba, wkrętak krzyżowy minimalizuje ryzyko poślizgu, co jest szczególnie ważne w zastosowaniach wymagających precyzyjnego dokręcenia. W praktyce, wkręty Phillips są powszechnie stosowane w konstrukcji mebli, elektroniki oraz w różnych projektach DIY. Warto również zaznaczyć, że wkrętaki krzyżowe są dostępne w różnych rozmiarach, co pozwala na ich użycie w szerokim zakresie zastosowań. W kontekście standardów przemysłowych, wkręty z łbem Phillips są jednymi z najczęściej stosowanych, co sprawia, że znajomość odpowiedniego narzędzia jest niezbędna w pracy każdego fachowca.

Pytanie 10

Zerwanie (uszkodzenie) w torze sygnału kanału zwrotnego wzmacniacza dystrybucyjnego w sieci kablowej wpłynie na abonenta korzystającego z internetu za pośrednictwem modemu kablowego

A. wolniejsze ładowanie się stron WWW
B. brak otwierania się stron WWW
C. brak różnicy w ładowaniu się stron WWW
D. szybsze ładowanie się stron WWW
Jak uszkodzisz tor sygnałowy w kanale zwrotnym wzmacniacza w sieci kablowej, to w sumie nie działa przesyłanie danych z modemu kablowego do różnych urządzeń od dostawcy. Ten kanał zwrotny to kluczowy element, bo dzięki niemu możesz wysyłać różne prośby, na przykład otwieranie stron czy korzystanie z aplikacji online. Gdy tor jest uszkodzony, modem nie wysyła pakietów danych, i strony po prostu się nie otwierają. W praktyce, jak tylko coś się popsuje, trzeba to szybko naprawić, żeby internet działał jak należy. Dobrze jest regularnie sprawdzać stan infrastruktury i robić testy sygnału, bo to naprawdę zmniejsza ryzyko awarii. Standardy branżowe mówią, że sygnał w sieci kablowej powinien być stabilny, żeby użytkownicy mogli bezproblemowo korzystać z internetu.

Pytanie 11

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. izolowanych
B. zasilanych akumulatorowo
C. wykonanych z elastycznych tworzyw sztucznych
D. odpornych na wysoką temperaturę
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 12

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Pomiary sprawdzające
B. Programowanie
C. Czyszczenie
D. Regulacja parametrów
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 13

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. dipole
B. direktory
C. symetryzatory
D. fidery
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 14

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu drugi element tego samego typu
B. Przylutować obok komponentu odcinek przewodu
C. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
D. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 15

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tyrystor
B. Warikap
C. Dioda LED
D. Tranzystor bipolarny
Dioda elektroluminescencyjna, czyli LED, to półprzewodnikowe źródło światła, które świeci dzięki rekombinacji elektronów i dziur. Zazwyczaj ma dwuwarstwową strukturę p-n, przez co nie działa jak tyrystor, który ma cztery warstwy. Wydaje mi się, że niektórym może się pomylić, że dioda może mieć czterowarstwową budowę, a to nieprawda. Z kolei warikap to dioda, która zmienia pojemność w odpowiedzi na napięcie, więc to też nie jest to, czego szukamy w tej sytuacji. A jeśli chodzi o tranzystory bipolarne, to mają trzy warstwy, co sprawia, że są zupełnie inne niż tyrystory. Wiem, że czasem łatwo pomylić różne elementy półprzewodnikowe, ale warto to zrozumieć, żeby nie wprowadzać się w błąd i nie robić błędów przy projektowaniu układów elektronicznych.

Pytanie 16

Które złącze jest przeznaczone do podłączenia sygnałów: zespolonego obrazu, koloru R, koloru G, koloru B, luminancji oraz chrominancji, a także sygnału audio dla lewego i prawego kanału?

A. JACK
B. S-VHS
C. DIN 5
D. EUROSCART
Odpowiedź EUROSCART to strzał w dziesiątkę! To złącze fajnie łączy sygnały wideo i audio w jednym kablu, co naprawdę ułatwia życie podczas oglądania filmów czy grania w gry. Obsługuje różne rodzaje sygnałów, takie jak R, G i B, co jest mega ważne dla jakości obrazu. Dodatkowo, EUROSCART przesyła dźwięk na dwa kanały – lewy i prawy, co sprawia, że można go znaleźć w wielu urządzeniach RTV, jak telewizory czy odtwarzacze DVD. Na przykład, kiedy podłączasz odtwarzacz DVD do telewizora, używając EUROSCART, nie musisz się martwić o bałagan z kablami. To złącze jest też zgodne z normą CENELEC EN 50049-1, co znaczy, że jest powszechnie uznawane w świecie elektroniki. Dobrze wiedzieć, że jest tak szeroko stosowane!

Pytanie 17

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 50 Ω
B. 120 Ω
C. 75 Ω
D. 100 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 18

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. LPT
B. SATA
C. D-SUB 15
D. RS 232
Odpowiedź SATA jest prawidłowa, ponieważ jest to jeden z najpopularniejszych interfejsów stosowanych do podłączania dysków twardych i napędów SSD do płyt głównych komputerów. Standard SATA (Serial ATA) został wprowadzony, aby zastąpić starszy interfejs PATA (Parallel ATA) i oferuje znacznie wyższą prędkość transferu danych, co jest kluczowe w kontekście wydajności nowoczesnych systemów komputerowych. SATA obsługuje prędkości transferu do 6 Gb/s w wersji III, co pozwala na szybki dostęp do danych i efektywne wykonywanie operacji na plikach. Zastosowanie SATA umożliwia również łatwiejsze podłączanie i wymianę dysków, co jest istotne w kontekście modernizacji sprzętu. Warto również zauważyć, że złącza SATA mają charakterystyczny kształt i orientację, co ułatwia ich prawidłowe podłączenie. Przykładowo, podłączając dysk SSD do płyty głównej, użytkownik powinien zwrócić uwagę na odpowiednie złącze SATA, aby uniknąć problemów z wydajnością oraz kompatybilnością.

Pytanie 19

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. dekoder
B. spliter
C. modulator
D. generator
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 20

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Wymiana luźnych złączy RJ
B. Testowanie przewodów sieciowych za pomocą testera
C. Ocena stanu zewnętrznej powłoki przewodów
D. Sprawdzenie przewodów sieciowych omomierzem
Sprawdzanie przewodów sieciowych testerem, wymiana obluzowanych złącz RJ oraz kontrola stanu powłoki zewnętrznej przewodów to wszystkie kluczowe czynności konserwacyjne, które nie powinny być pomijane przy utrzymaniu infrastruktury sieciowej. Tester kablowy jest niezbędnym narzędziem do diagnozowania problemów w okablowaniu. Umożliwia on wykrycie błędów w połączeniach, takich jak zwarcia, przerwy lub zamiany żył, co ma bezpośredni wpływ na jakość i stabilność połączenia sieciowego. Ignorowanie tej czynności może prowadzić do poważnych problemów z wydajnością sieci, co w efekcie może wpływać na całą organizację. Z kolei wymiana obluzowanych złącz RJ jest kluczowa, ponieważ takie złącza mogą prowadzić do utraty sygnału, co skutkuje przerwami w transmisji danych. Stabilne i dobrze zainstalowane złącza są fundamentem niezawodności całej sieci. Kontrola stanu powłoki zewnętrznej przewodów jest również niezbędna, ponieważ uszkodzenia mechaniczne mogą prowadzić do awarii przewodów, a także narażać je na działanie czynników atmosferycznych, co może wpłynąć na ich działanie. W kontekście standardów branżowych, takie jak ISO/IEC 11801, zaleca się regularne przeprowadzanie tych czynności konserwacyjnych, aby zapewnić wysoką jakość usług sieciowych oraz minimalizować ryzyko awarii.

Pytanie 21

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. watomierze
B. woltomierze
C. wariometry
D. waromierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 22

Jaką funkcję pełni PTY w radiu?

A. Automatyczną "regulację głośności"
B. Odbiór informacji drogowych
C. Wybieranie i przeszukiwanie typu programu
D. Odbiór wiadomości tekstowych
Funkcja PTY, czyli Program Type, jest kluczowym elementem standardu RDS (Radio Data System), który pozwala na identyfikację i klasyfikację programów radiowych. Główna rola PTY polega na umożliwieniu słuchaczom łatwego wyszukiwania stacji radiowych na podstawie ich rodzaju programowego, co znacząco ułatwia odbiór audycji odpowiadających ich zainteresowaniom. Na przykład, użytkownik może ustawić odbiornik tak, aby automatycznie wyszukiwał stacje nadające muzykę pop lub wiadomości. Dzięki temu, w sytuacji, gdy słuchacz chce zmienić stację, nie musi przeszukiwać wszystkich dostępnych sygnałów ręcznie. PTY jest stosowane w praktyce przez wiele stacji radiowych, które nadają programy o różnych typach. Wspiera to również standardy jakości dźwięku i dostępu do informacji, które są obowiązujące w branży radiowej, a także zwiększa komfort użytkowania odbiorników. Użytkownicy powinni zwrócić uwagę na dostępność tej funkcji w swoich odbiornikach radiowych, ponieważ może to być istotny atut przy wyborze sprzętu.

Pytanie 23

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 5 zł
B. 10 zł
C. 15 zł
D. 3 zł
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 24

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 500 Ω
B. 300 Ω
C. 75 Ω
D. 50 Ω
Właściwa odpowiedź to 75 Ω, ponieważ większość systemów telewizyjnych, w tym anteny i odbiorniki, zostało zaprojektowanych do pracy z impedancją 75 Ω. Stosowanie rezystora o tej wartości na zakończeniu linii koncentrycznej jest kluczowe dla zapewnienia odpowiedniego dopasowania impedancji, co minimalizuje straty sygnału oraz odbicia. W praktyce, jeśli zakończenie linii nie będzie zgodne z impedancją, część sygnału może zostać odbita, co prowadzi do zakłóceń w odbiorze i obniżenia jakości sygnału wideo i audio. W standardach telekomunikacyjnych, takich jak normy DVB-T i DVB-S, impedancja 75 Ω jest powszechnie stosowana, co potwierdza jej znaczenie w branży. Przykładem zastosowania rezystora 75 Ω w praktyce jest montaż gniazdek antenowych oraz zakończeń kabli w instalacjach domowych, gdzie kluczowe jest zachowanie wysokiej jakości sygnału. Dodatkowo, w profesjonalnych aplikacjach telewizyjnych, takich jak systemy telewizji przemysłowej czy transmisje na żywo, wykorzystanie odpowiednich rezystorów końcowych jest niezbędne do utrzymania integralności sygnału.

Pytanie 25

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Zasilacza komputerowego
B. Czujnika kontaktronowego
C. Zwrotnicy antenowej
D. Symetryzatora antenowego
Zasilacze komputerowe to naprawdę ważne elementy w każdym komputerze, bo to właśnie one dostarczają prąd do wszystkich podzespołów. Ważne, żeby pamiętać o regularnym czyszczeniu elementów chłodzących, takich jak wentylatory i radiatory. Gromadzący się kurz może znacznie ograniczyć ich działanie i prowadzić do przegrzewania zasilacza, co w efekcie może uszkodzić sprzęt. Czyszczenie to nie tylko kwestia wyglądu, ale też bezpieczeństwa i wydajności całego systemu. Z mojego doświadczenia, warto robić to co kilka miesięcy, w zależności od tego, w jakich warunkach pracujemy. Używanie odkurzaczy antystatycznych czy sprężonego powietrza to dobre sposoby na pozbycie się zanieczyszczeń. Troska o zasilacz to klucz do dłuższej żywotności komputera oraz stabilnej pracy.

Pytanie 26

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
B. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
C. Analogowy na zakresie I = 1 A i RWE = 50 Ω
D. Analogowy na zakresie I = 10 A i RWE = 50 Ω
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 27

W jakim czujniku do działania wykorzystuje się efekt zmiany pola magnetycznego?

A. Tensometrycznym
B. Kontaktronowym
C. Pojemnościowym
D. Bimetalicznym
Czujnik kontaktronowy wykorzystuje zjawisko zmiany pola magnetycznego do zadziałania, co jest kluczowe w jego działaniu. Kontaktrony składają się z dwóch metalowych styków zamkniętych w hermetycznej obudowie. Kiedy pole magnetyczne jest obecne, stykają się one, co powoduje zamknięcie obwodu elektrycznego. To zjawisko jest szeroko stosowane w automatyce budynkowej, systemach alarmowych oraz w różnych czujnikach i przełącznikach. Przykładem zastosowania kontaktronów jest detekcja otwarcia drzwi i okien w systemach zabezpieczeń, gdzie obecność lub brak pola magnetycznego sygnalizuje stan zamknięcia lub otwarcia. Warto również zaznaczyć, że czujniki te są preferowane ze względu na swoją niezawodność, długą żywotność oraz odporność na warunki zewnętrzne, co czyni je zgodnymi z normami ISO w zakresie jakości i trwałości urządzeń elektronicznych.

Pytanie 28

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną fd = 0,1 Hz oraz górną częstotliwość graniczną fg = 150 Hz. Jaki to typ wzmacniacza?

A. selektywny
B. dla górnej części pasma akustycznego
C. szerokopasmowy
D. dla dolnej części pasma akustycznego
Wybór odpowiedzi wskazujących na selektywny wzmacniacz, wzmacniacz dla górnej części pasma akustycznego czy szerokopasmowy wskazuje na pewne nieporozumienia dotyczące definicji i zastosowań wzmacniaczy w kontekście pasma przenoszenia. Selektywny wzmacniacz, który ma ograniczony zakres częstotliwości, jest używany głównie w radiach i systemach komunikacyjnych, gdzie kluczowe jest wzmocnienie konkretnych sygnałów, a nie ogólne pasmo. Natomiast wzmacniacz dla górnej części pasma akustycznego skupiałby się na wyższych częstotliwościach, co nie jest zgodne z podanymi wartościami fd i fg. Wzmacniacze szerokopasmowe są zaprojektowane do obsługi szerokiego zakresu częstotliwości, co również nie jest zgodne z charakterystyką wzmacniacza, który ma wąski zakres od 0,1 Hz do 150 Hz. Typowe błędy myślowe mogą obejmować niezrozumienie, że dolne pasmo akustyczne obejmuje niskie częstotliwości, co często prowadzi do pomylenia z pasmami wyższymi. W praktyce, dobór odpowiedniego wzmacniacza do konkretnego zastosowania jest kluczowy dla uzyskania optymalnej jakości dźwięku, co w przypadku niskich częstotliwości wymaga odpowiednich rozwiązań technicznych.

Pytanie 29

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. halonowej
C. pianowej
D. proszkowej
Gaśnice proszkowe, śniegowe i halonowe nie są odpowiednie do gaszenia pożarów instalacji elektrycznych. Gaśnice proszkowe, mimo że skuteczne w wielu sytuacjach, mogą nie być wystarczająco bezpieczne w bezpośrednim kontakcie z energią elektryczną. Proszek gaśniczy nie przewodzi prądu, ale w przypadku pożaru elektrycznego, może on nie skutkować pełnym ugaszeniem ognia, a jednocześnie może zanieczyścić urządzenia elektryczne, co prowadzi do ich uszkodzenia. Z kolei gaśnice śniegowe, które wykorzystują dwutlenek węgla, mogą powodować niebezpieczne sytuacje, gdyż ich działanie polega na odcinaniu dostępu powietrza do ognia. Jednak w przypadku niektórych instalacji elektrycznych, może dojść do sytuacji, gdzie nagłe zmiany temperatury mogą spowodować uszkodzenia elementów elektronicznych, co w konsekwencji prowadzi do dalszych zagrożeń. Halon, mimo że jest znany jako skuteczny środek gaśniczy, jest substancją, która również nie jest polecana do gaszenia pożarów związanych z urządzeniami elektrycznymi, głównie ze względów ekologicznych i zdrowotnych. W rzeczywistości, stosowanie halonu zostało w dużej mierze ograniczone przez przepisy międzynarodowe dotyczące ochrony środowiska. W związku z tym, użycie tych trzech typów gaśnic do gaszenia pożarów instalacji elektrycznych jest nie tylko niewłaściwe, ale także może zwiększać ryzyko i konsekwencje pożaru, co jasno podkreślają standardy BHP w kontekście ochrony przeciwpożarowej.

Pytanie 30

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. NC
B. EOL
C. NO
D. 2EOL
Obwód sabotażowy z konfiguracją NC (Normally Closed) oznacza, że urządzenie jest domyślnie zamknięte. Gdy obwód jest przerwany (np. przez otwarcie drzwi), sygnał jest wysyłany do systemu alarmowego, co pozwala na wykrycie sabotażu. Użycie konfiguracji NC jest standardową praktyką w instalacjach alarmowych, ponieważ zapewnia, że w przypadku awarii (np. uszkodzenia przewodu) obwód zostanie przerwany, co wywoła alarm. W praktyce oznacza to, że wszystkie czujniki, takie jak kontaktrony lub czujniki ruchu, powinny być skonfigurowane w trybie NC, aby skutecznie monitorować stany i sygnalizować nieautoryzowany dostęp lub usunięcie elementów z systemu. Dodatkowo, dzięki temu podejściu system jest odporniejszy na fałszywe alarmy, ponieważ jakiekolwiek działanie niezgodne z normalnym funkcjonowaniem obwodu wywoła reakcję alarmową, co jest kluczowe w zabezpieczeniach.

Pytanie 31

Jakie jest zastosowanie symetryzatora antenowego?

A. do dopasowania impedancyjnego anteny i odbiornika
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. w celu zmiany charakterystyki kierunkowej anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 32

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. zielonego i niebieskiego
B. niebieskiego i czerwonego
C. zielonego lub niebieskiego
D. czerwonego lub zielonego
Dobra robota z odpowiedzią! Kolor żółty w systemie RGB uzyskuje się, łącząc mocne światło czerwone i zielone. Jeśli w torze koloru coś szwankuje, na przykład w torze czerwonym albo zielonym, to telewizor będzie miał problem z wyświetleniem żółtego. A z tymi telewizorami LCD i LED to jest tak, że każdy piksel ma subpiksele z tych trzech kolorów - czerwonego, zielonego i niebieskiego, które razem tworzą całą paletę kolorów. Standardy jak sRGB mówią, jak kolory powinny wyglądać, a ich prawidłowe wyświetlenie jest mega istotne dla jakości obrazu. Więc jak nie widzisz koloru żółtego, warto sprawdzić te tory kolorystyczne, żeby znaleźć, co może być uszkodzone. To jest zgodne z najlepszymi praktykami, które stosujemy w serwisie sprzętu wideo.

Pytanie 33

Aby ograniczyć niepożądany wpływ zewnętrznych pól elektromagnetycznych na przesył sygnałów cyfrowych przez kable, należy

A. zakopać kable w ziemi na głębokości minimum 0,6 m
B. wykorzystać kable z wzmocnioną izolacją
C. umieścić kable w rurkach z PVC
D. zastosować przewody ekranowane
Zastosowanie przewodów ekranowanych jest kluczowe dla minimalizowania negatywnego wpływu pól elektromagnetycznych na transmisję sygnałów cyfrowych. Ekranowanie polega na otoczeniu przewodów warstwą materiału przewodzącego, który działa jak bariera dla zewnętrznych pól elektromagnetycznych. Dzięki temu, sygnał wewnętrzny jest chroniony przed zakłóceniami, co pozwala na utrzymanie wysokiej jakości transmisji. Ekrany mogą być wykonane z różnych materiałów, takich jak miedź czy aluminium, co wpływa na skuteczność ochrony. Przykładowo, w zastosowaniach przemysłowych, gdzie przewody są narażone na silne pola elektromagnetyczne, stosowanie przewodów ekranowanych zgodnych z normą IEC 60227 jest standardem, który zapewnia niezawodność i stabilność działania systemów. W praktyce, przewody te znalazły zastosowanie w systemach komunikacyjnych, automatyce przemysłowej oraz w aplikacjach audio-wideo, gdzie jakość sygnału jest priorytetem.

Pytanie 34

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. rejestrator z dużą pojemnością dysku
B. dostęp do sieci komputerowej
C. zasilacz o większej mocy prądowej
D. obiektyw o wyższej rozdzielczości
Dostęp do sieci komputerowej jest kluczowy dla działania kamery megapikselowej IP, ponieważ te urządzenia wykorzystują protokół IP do przesyłania danych wideo. Kamery IP są w stanie transmitować obraz w czasie rzeczywistym przez sieć, co oznacza, że mogą być monitorowane zdalnie z różnych punktów dostępu. Przykładowo, w systemach monitoringu i zabezpieczeń, takie kamery mogą być zainstalowane w różnych lokalizacjach i połączone z serwerem lub chmurą, co umożliwia centralne zarządzanie i archiwizację nagrań. Warto również pamiętać, że w przypadku kamer megapikselowych, które oferują wysoką rozdzielczość, wymagana jest odpowiednia przepustowość sieci, aby zapewnić płynną transmisję obrazu bez opóźnień. Standardy takie jak H.264 lub H.265 wykorzystywane do kompresji wideo pomagają zredukować obciążenie sieci, co jest szczególnie ważne w dużych instalacjach monitorujących. Dobre praktyki w branży obejmują także zabezpieczenie sieci, aby chronić dane przesyłane przez kamery IP przed nieautoryzowanym dostępem.

Pytanie 35

Jaką rolę odgrywa router w sieci komputerowej?

A. Konwertera danych analogowych
B. Konwertera danych cyfrowych
C. Węzła komunikacyjnego
D. Łącznika segmentów sieci
Router jest kluczowym elementem w sieci komputerowej, pełniącym funkcję węzła komunikacyjnego, co oznacza, że zarządza ruchem danych pomiędzy różnymi sieciami. Jego głównym zadaniem jest kierowanie pakietów danych do odpowiednich adresów, co zapewnia efektywną komunikację między urządzeniami znajdującymi się w różnych lokalizacjach. Przykładem zastosowania routera może być domowa sieć Wi-Fi, gdzie router łączy lokale urządzenia, takie jak komputery, telefony czy smart TV z Internetem. W dzisiejszym świecie, w którym komunikacja opiera się na protokołach takich jak TCP/IP, routery są niezbędne do prawidłowego przesyłania informacji. Dobry router powinien przestrzegać standardów takich jak RFC 791, dotyczącego protokołu IP, co zapewnia jego interoperacyjność z innymi urządzeniami. Dodatkowo, routery mogą oferować zaawansowane funkcje, takie jak NAT (Network Address Translation), co pozwala na oszczędne wykorzystanie adresów IP oraz zwiększa bezpieczeństwo sieci.

Pytanie 36

Jaką rozdzielczość obrazu oferuje telewizja w standardzie HDTV?

A. 1280x1024
B. 1920x1080
C. 1024x768
D. 1360x768
Wybór rozdzielczości innej niż 1920x1080 wskazuje na zrozumienie określonych standardów obrazu, lecz nieprawidłowe odpowiedzi mogą prowadzić do nieporozumień dotyczących jakości obrazu. Rozdzielczość 1360x768, chociaż zbliżona do parametrów HD, jest w rzeczywistości rozdzielczością, która nie osiąga wysokich standardów jakości obrazu, jakim jest Full HD. Natomiast 1024x768 to rozdzielczość często stosowana w starszych monitorach komputerowych, a jej proporcje nie odpowiadają typowym formatom telewizyjnym, co skutkuje gorszą jakością obrazu w kontekście telewizji. Rozdzielczość 1280x1024 jest także rozdzielczością używaną w monitorach, ale w formacie 5:4, co nie jest zgodne z typowym formatem panoramicznym stosowanym w telewizji. Wiele osób może błędnie sądzić, że mniejsze rozdzielczości mogą być wystarczające dla jakości obrazu w telewizji, co jest mylnym założeniem. Obecnie, w dobie rosnącej dostępności treści w wysokiej rozdzielczości, korzystanie z rozdzielczości poniżej 1920x1080 staje się coraz bardziej nieprzydatne. Warto zaznaczyć, że przy wyborze telewizora, ważne jest także zrozumienie, że rozdzielczość to nie jedyny czynnik wpływający na jakość obrazu, a dodatkowe parametry, takie jak częstotliwość odświeżania, kontrast oraz HDR, mają kluczowe znaczenie dla ostatecznego wrażenia wizualnego.

Pytanie 37

Jakie działania powinny być podjęte jako pierwsze, gdy przystępuje się do naprawy telewizyjnego odbiornika?

A. Wyłączenie odbiornika pilotem, a następnie zdemontowanie tylnej obudowy
B. Odłączenie kabla antenowego od odbiornika, a następnie wyłączenie zasilania odbiornika
C. Wyłączenie odbiornika, a następnie odłączenie go od zasilania przez wyjęcie wtyczki z gniazda sieci elektrycznej
D. Wyłączenie napięcia w budynku, a następnie odłączenie kabla antenowego od odbiornika
Prawidłowa odpowiedź opiera się na fundamentalnych zasadach bezpieczeństwa przy pracy z urządzeniami elektrycznymi. Wyłączenie odbiornika telewizyjnego to pierwszy krok, który powinien być zawsze realizowany przed przystąpieniem do jakiejkolwiek naprawy. Oprócz tego, odłączenie go od zasilania poprzez wyjęcie wtyczki z gniazda sieci elektrycznej jest kluczowe dla uniknięcia ryzyka porażenia prądem lub uszkodzenia sprzętu. Standardy BHP oraz zasady pracy z urządzeniami elektrycznymi sugerują, aby zawsze upewnić się, że urządzenie jest całkowicie odłączone od źródła zasilania. W praktyce, przed rozpoczęciem naprawy warto również sprawdzić, czy nie ma widocznych uszkodzeń kabla zasilającego i gniazdka, co może zapobiec dalszym problemom. Na przykład, w przypadku wystąpienia zakłóceń obrazu, pierwszym działaniem powinno być zawsze włączenie procedury wyłączania odbiornika, a następnie odłączenie go od prądu, co pozwala na bezpieczne przeprowadzenie dalszych działań diagnostycznych lub serwisowych.

Pytanie 38

Termin PDP odnosi się do typów wyświetlaczy

A. diodowych
B. plazmowych
C. fluorescencyjnych
D. ciekłokrystalicznych
PDP, czyli Plazma Display Panel, odnosi się do technologii wyświetlaczy plazmowych, które wykorzystują gazy szlachetne do generowania obrazu. W plazmowych wyświetlaczach, dwa cienkie szkła są pokryte warstwą fosforu i wypełnione gazem, takim jak argon czy neon. Kiedy na te gazy działa wysoka energia elektryczna, powstają cząstki plazmy, które emitują światło. Wyświetlacze plazmowe oferują szeroki kąt widzenia, żywe kolory i doskonały kontrast, co czyni je idealnym rozwiązaniem dla dużych ekranów telewizyjnych i projektorów. W praktyce, plazmy były popularne w telewizorach wysokiej rozdzielczości, szczególnie w dużych formatach. Choć technologia OLED zyskała na popularności, plazmowe wyświetlacze wciąż pozostają istotnym elementem w kontekście technologii wizualnych, dostarczając wyjątkową jakość obrazu przy odpowiednim oświetleniu pomieszczenia.

Pytanie 39

Jaką minimalną przestrzeń należy utrzymać (dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 100 mm
B. 200 mm
C. 20 mm
D. 50 mm
Odpowiedź 200 mm jest prawidłowa, ponieważ zgodnie z normami dotyczącymi instalacji kablowych, zachowanie odpowiedniej odległości pomiędzy przewodami zasilającymi a nieekranowanymi kablami komputerowymi jest kluczowe dla minimalizacji zakłóceń elektromagnetycznych. W przypadku tras kablowych dłuższych niż 35 m, zaleca się, aby odległość ta wynosiła co najmniej 200 mm, co jest zgodne z wytycznymi określonymi w normach TN i IEEE. Przykładem zastosowania tej zasady jest instalacja sieci komputerowej w biurze, gdzie unikanie bliskiego układania kabli zasilających i transmisyjnych pozwala na stabilniejszą i bardziej niezawodną komunikację sieciową. Dbanie o takie odległości przekłada się na mniejsze ryzyko interferencji oraz lepszą jakość sygnału, co jest kluczowe w środowiskach o dużym natężeniu ruchu sieciowego. Dlatego przestrzeganie tych norm nie tylko zabezpiecza instalację przed problemami technicznymi, ale również poprawia komfort użytkowników i wydajność systemów informatycznych.

Pytanie 40

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
B. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
C. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
D. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
Przy analizie objawów, jakie mogą wystąpić podczas pojawienia się przepięcia w niezabezpieczonej sieci energetycznej, istnieje pewne mylne rozumienie funkcji wyłączników nadprądowych oraz różnicowoprądowych. Wyłącznik nadprądowy działa głównie w sytuacjach, gdy następuje przeciążenie lub zwarcie, co może prowadzić do znacznego wzrostu prądu, jednak nie jest on przeznaczony do ochrony przed przepięciami. Przepięcie może występować bez wzrostu prądu do poziomów, które spowodowałyby zadziałanie tego typu wyłącznika. Wyłącznik różnicowoprądowy z kolei ma na celu wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co jest ważne w przypadku wykrywania uszkodzonych izolacji i ryzyka porażenia prądem elektrycznym. Niemniej jednak, nie zareaguje on na przepięcia, a jego zastosowanie w kontekście przepięć jest zatem nieadekwatne. Zwiększenie poboru energii przez urządzenia elektroniczne w odpowiedzi na przepięcie to kolejny błąd myślowy. W rzeczywistości przepięcia prowadzą do uszkodzenia lub wyłączenia sprzętu, a nie do jego intensyfikacji. Właściwe zrozumienie mechanizmów zabezpieczeń elektrycznych jest kluczowe dla projektowania systemów, które minimalizują ryzyko uszkodzeń i zapewniają ich niezawodność w warunkach zmiennych obciążeń i zjawisk atmosferycznych.