Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 maja 2025 11:56
  • Data zakończenia: 20 maja 2025 12:08

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. nasadkowego
B. dynamometrycznego
C. oczkowego
D. imbusowego
Odpowiedzi 'nasadkowego', 'imbusowego' oraz 'oczko' nie są właściwe w kontekście dokręcania z określonym momentem obrotowym, ponieważ te narzędzia nie mają możliwości precyzyjnego ustawienia siły dokręcania. Klucz nasadkowy, chociaż użyteczny do odkręcania i dokręcania śrub, nie mierzy i nie kontroluje momentu obrotowego, co może prowadzić do nadmiernego lub niewystarczającego dokręcenia. Podobnie klucze imbusowe są używane do śrub o wewnętrznych gniazdach sześciokątnych, ale również nie pozwalają na kontrolę momentu. Klucz oczkowy, z kolei, jest skuteczny przy dokręcaniu śrub, ale także nie ma funkcji pomiarowej. Oznacza to, że stosując te narzędzia, ryzykujemy popełnienie błędów, które mogą skutkować uszkodzeniem połączeń, co szczególnie w kontekście konstrukcji mechanicznych, takich jak silniki czy maszyny, może prowadzić do awarii. Należy mieć na uwadze, że zbyt mocne dokręcenie śruby może prowadzić do jej pęknięcia lub deformacji gwintu, a zbyt luźne połączenie może skutkować poluzowaniem elementów podczas pracy maszyny. Dlatego klucz dynamometryczny, jako narzędzie zaprojektowane z myślą o precyzyjnym dokręcaniu, jest niezastąpiony w profesjonalnym warsztacie czy podczas montażu w przemyśle.

Pytanie 2

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
B. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
C. założyć opaskę uciskową powyżej miejsca urazu
D. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
Założenie opatrunku z gazy jałowej bezpośrednio na ranę, przemycie rany wodą utlenioną, czy ułożenie poszkodowanego w pozycji bocznej ustalonej to działania, które w kontekście krwotoku tętniczego mogą być niewłaściwe i potencjalnie niebezpieczne. Opatrunek z gazy ma na celu jedynie zabezpieczenie rany przed zakażeniem i nie jest skuteczny w przypadku intensywnego krwawienia, jakim jest krwotok tętniczy. Gazy mogą wchłonąć część krwi, ale nie zatrzymają krwawienia, co grozi zaostrzeniem stanu pacjenta. Przemywanie rany wodą utlenioną również nie jest rekomendowane, ponieważ może prowadzić do uszkodzenia tkanek oraz zapozostawania resztek płynów, co może zwiększyć ryzyko infekcji. Ponadto, oczekiwanie na pomoc medyczną w pozycji bocznej ustalonej, stosowane w przypadku podejrzenia urazów kręgosłupa, nie jest adekwatną reakcją w sytuacji krwotoku. Kluczem do skutecznego działania w takich przypadkach jest natychmiastowe zatrzymanie krwawienia, co można osiągnąć tylko przez zastosowanie opaski uciskowej. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji zdrowotnych, w tym do wstrząsu, a w skrajnych przypadkach do śmierci pacjenta. Dlatego niezwykle ważne jest, aby podejmować świadome decyzje w sytuacjach zagrożenia życia, kierując się wiedzą na temat skutecznych metod udzielania pierwszej pomocy.

Pytanie 3

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. SmartWire-DT
B. RS 485
C. PROFINET
D. CAN
Wybór RS 485 jako odpowiedzi jest błędny z powodu jego specyfiki projektowej. RS 485 jest standardem szeregowej komunikacji, który wymaga terminowania linii na obu końcach magistrali, aby zminimalizować odbicia sygnału i zapewnić integralność danych. Użytkownicy często mylą RS 485 z innymi protokołami, nie zdając sobie sprawy z wpływu terminacji na jakość sygnału. Z kolei CAN, czyli Controller Area Network, również wymaga rezystorów terminujących, co jest kluczowe dla jego działania w kontekście komunikacji w czasie rzeczywistym, zwłaszcza w aplikacjach motoryzacyjnych i przemysłowych. SmartWire-DT jest systemem komunikacyjnym, który również wymaga terminacji. Warto zauważyć, że nie wszyscy użytkownicy mają pełne zrozumienie zasad działania różnych magistrali, co prowadzi do błędnych odpowiedzi. W przypadku komunikacji w automatyce przemysłowej istotne jest, aby projektanci systemów dokładnie rozumieli parametry techniczne wykorzystywanych protokołów, aby unikać problemów z transmisją danych, które mogą prowadzić do awarii lub spadku wydajności systemów. Kluczowe jest przestrzeganie standardów branżowych oraz dobrej praktyki projektowej, co zapewnia stabilność i efektywność całego systemu komunikacyjnego.

Pytanie 4

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
B. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
C. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 5

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. śniegową oznaczoną BC
B. proszkową oznaczoną ABC
C. pianową oznaczoną AF
D. proszkową oznaczoną ABC/E
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 6

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz płaski
B. Zaciskarkę konektorów
C. Klucz dynamometryczny
D. Zaciskarkę tulejek
Wybór klucza płaskiego lub klucza dynamometrycznego do przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej jest nieodpowiedni, ponieważ narzędzia te nie są przeznaczone do wykonywania połączeń elektrycznych. Klucz płaski jest używany głównie do luzowania lub dokręcania nakrętek i śrub, co nie ma zastosowania w kontekście zaciskania przewodów. Z kolei klucz dynamometryczny, który służy do precyzyjnego dokręcania połączeń z określonym momentem obrotowym, również nie ma zastosowania w procesie przygotowania przewodów do montażu w listwie zaciskowej. W przypadku połączeń elektrycznych kluczowe jest zapewnienie odpowiedniej struktury połączenia, co osiąga się jedynie za pomocą narzędzi dedykowanych do tego celu, a nie standardowych narzędzi mechanicznych. Wybór niewłaściwego narzędzia może prowadzić do słabych połączeń, co skutkuje podwyższoną rezystancją i ryzykiem awarii instalacji. Zaciskarka konektorów, chociaż może wydawać się lepszym wyborem, nie jest odpowiednia w kontekście przewodów LgY, które wymagają specyficznego typu zaciskania. Podsumowując, nieprzemyślane podejście do doboru narzędzi może prowadzić do poważnych błędów, które zagrażają zarówno efektywności instalacji, jak i bezpieczeństwu użytkowników.

Pytanie 7

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. rozmiarem
B. formą
C. kolejnością montażu
D. poziomem skomplikowania
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 8

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. temperaturę.
B. stan napięcia.
C. bicie osiowe.
D. nawilżenie.
Wybór smarowania jako istotnego aspektu konserwacji paska zębatego jest mylny, ponieważ paski zębate nie wymagają smarowania, co odróżnia je od innych elementów napędowych, takich jak łańcuchy. W rzeczywistości smarowanie może nawet zaszkodzić, ponieważ może prowadzić do gromadzenia się brudu i zanieczyszczeń, co negatywnie wpłynie na działanie paska oraz kół pasowych. Bicie osiowe, będące innym błędnym wyborem, odnosi się do osi, na których zamontowane są elementy napędowe. Choć może mieć wpływ na działanie układów mechanicznych, to w kontekście paska zębatego kluczowe jest monitorowanie jego napięcia, a nie samego bicia. Temperatura, będąca kolejną nieprawidłową odpowiedzią, jest również istotnym czynnikiem, ale nie w kontekście konserwacji paska. Zbyt wysoka temperatura może prowadzić do degradacji materiału paska, jednak kontrola ta nie jest tak kluczowa jak monitorowanie napięcia, które bezpośrednio wpływa na wydajność przenoszenia napędu. Zrozumienie tych różnic jest kluczowe dla prawidłowego utrzymania i funkcjonowania systemów napędowych, a ignorowanie tych zasad może prowadzić do poważnych awarii oraz zwiększenia kosztów serwisowych.

Pytanie 9

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra analogowego
B. Amperomierza cęgowego
C. Multimetra uniwersalnego
D. Amperomierza tablicowego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 10

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Termiczny
B. Silnikowy
C. Nadprądowy
D. Różnicowoprądowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 11

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik pływakowy
B. Czujnik ultradźwiękowy
C. Czujnik pojemnościowy
D. Czujnik hydrostatyczny
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 12

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
B. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
C. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
Wszystkie inne odpowiedzi zawierają koncepcje, które mogą być niebezpieczne lub niewłaściwe w kontekście udzielania pierwszej pomocy w przypadku odmrożeń. Na przykład, stosowanie wody utlenionej do polewania odmrożonego miejsca nie jest zalecane, ponieważ może to prowadzić do podrażnienia tkanek i zwiększenia bólu. Woda utleniona jest skuteczna w oczyszczaniu ran, ale nie nadaje się do stosowania na uszkodzoną skórę, szczególnie w przypadkach oparzeń czy odmrożeń, gdzie skóra jest już osłabiona. Kolejnym błędem jest pomysł smarowania dłoni tłustym kremem. Tłuste substancje mogą zatkać pory skóry i spowodować dodatkowe podrażnienia, a także nie pozwalają na naturalne procesy regeneracyjne. Transportowanie poszkodowanego do domu to również niewłaściwe podejście. W sytuacjach medycznych zawsze należy dążyć do zapewnienia profesjonalnej pomocy w szpitalu, gdzie dostępne są odpowiednie środki i eksperci. Kluczowe jest, aby osoby udzielające pierwszej pomocy nie opierały się na intuicji, ale stosowały się do uznawanych standardów. W sytuacjach zagrożenia zdrowia i życia, jak odmrożenia, każda minuta może być decydująca.

Pytanie 13

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 85,0 kW
B. 8,5 kW
C. 51,0 kW
D. 5,1 kW
Moc hydrauliczna siłownika można obliczyć za pomocą wzoru: P = Q * p, gdzie P to moc w watach, Q to natężenie przepływu w litrach na minutę, a p to ciśnienie w barach. W tym przypadku mamy p = 60 barów oraz Q = 85 l/min. Aby obliczyć moc, musimy najpierw przeliczyć jednostki: 1 l/min = 0,001 m³/min, a 60 barów = 6 MPa. Przeliczając natężenie przepływu: Q = 85 l/min * 0,001 m³/l = 0,085 m³/min. Teraz przeliczamy na sekundy: 0,085 m³/min = 0,085/60 m³/s = 0,00141667 m³/s. Teraz możemy obliczyć moc: P = Q * p = 0,00141667 m³/s * 6 MPa = 8,5 kW. Tego typu obliczenia są kluczowe dla inżynierów zajmujących się hydrauliką, ponieważ pozwalają na dobór odpowiednich komponentów systemu hydraulicznego, takich jak pompy i siłowniki, co ma bezpośredni wpływ na efektywność energetyczną oraz funkcjonalność urządzenia. W praktyce, znajomość mocnych punktów siłowników hydraulicznych pozwala na ich właściwe zastosowanie w maszynach przemysłowych, budowlanych czy w aplikacjach mobilnych.

Pytanie 14

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 24
B. 30
C. 60
D. 75
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 15

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Zwrotny
B. Rozdzielający
C. Przelotowy
D. Odcinający
Wybór niewłaściwego zaworu wynika z nieporozumienia dotyczącego funkcji poszczególnych typów zaworów. Zawór rozdzielający nie zapewnia jednokierunkowego przepływu czynnika roboczego, lecz ma na celu kierowanie przepływu do różnych sekcji systemu. Używany jest w aplikacjach, gdzie konieczne jest przełączanie między różnymi obiegami, co czyni go nieodpowiednim w kontekście wymagania o przepływie tylko w jednym kierunku. Zawór odcinający, z kolei, służy do całkowitego zamykania lub otwierania przepływu, a nie do jego kontrolowania w określonym kierunku. W praktyce, zawory odcinające są istotne w sytuacjach, gdzie konieczne jest całkowite odcięcie zasilania do danej linii, jednak nie regulują one kierunku przepływu, co jest kluczowe w kontekście pytania. Zawór przelotowy, podobnie jak zawór odcinający, nie ogranicza przepływu do jednego kierunku, ale raczej umożliwia swobodny przepływ w obu kierunkach. Zrozumienie charakterystyki tych zaworów jest kluczowe dla prawidłowego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych, aby uniknąć błędów, które mogą prowadzić do awarii systemu.

Pytanie 16

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. użycia stałego napięcia w obwodzie sterowania silnika
D. braku jednej fazy zasilającej silnik
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 17

Chłodzenie powietrza przy użyciu agregatu chłodniczego do ciśnienia punktu rosy na poziomie +2 °C ma na celu

A. zwiększenie ciśnienia
B. usunięcie zanieczyszczeń
C. osuszenie powietrza
D. nasycenie powietrza parą wodną
Pojęcia związane z odfiltrowywaniem zanieczyszczeń, podwyższaniem ciśnienia oraz nasycaniem powietrza parą wodną są często mylone z procesem osuszania powietrza. Odfiltrowanie zanieczyszczeń to proces skupiający się na usuwaniu cząstek stałych oraz substancji chemicznych z powietrza, co odbywa się głównie za pomocą filtrów powietrza, a nie poprzez schładzanie. W przypadku podwyższania ciśnienia, nie ma bezpośredniego związku z oziębianiem powietrza; proces ten ma na celu zwiększenie intensywności przepływu powietrza lub gazów, co w kontekście klimatyzacji czy wentylacji nie prowadzi do osuszania. Nasycanie powietrza parą wodną jest odwrotnością osuszania, gdzie powietrze staje się przesycone wilgocią, co może prowadzić do kondensacji i problemów związanych z wilgocią. Takie podejścia mogą prowadzić do błędnych wniosków, ponieważ nie uwzględniają one fizycznych właściwości powietrza oraz jego zachowania w różnych warunkach temperaturowych i ciśnieniowych. Kluczowe jest zrozumienie, że schładzanie powietrza jest techniką, która bezpośrednio wpływa na jego wilgotność, co jest zasadniczym elementem w wielu zastosowaniach inżynieryjnych.

Pytanie 18

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym

A. czerwonym i czarnym.
B. brązowym i niebieskim.
C. czarnym i niebieskim.
D. szarym i niebieskim.
Wybór niewłaściwych kolorów przewodów do połączeń w układach zasilania DC może prowadzić do poważnych konsekwencji, zarówno w kontekście bezpieczeństwa, jak i wydajności funkcjonowania systemów mechatronicznych. Przykładowo, wiele osób może pomylić kolor przewodu, wybierając czarny i niebieski, co jest problematyczne, ponieważ niebieski przewód w standardowych instalacjach zasilania DC często oznacza przewód neutralny, co wprowadza dodatkowe zamieszanie. Użycie brązowego przewodu jest również błędne, gdyż w układach 24 V DC nie jest on standardowo używany jako przewód zasilający. W przypadku kolorów szarych i niebieskich, brak jednoznacznego przypisania ich do określonych funkcji w obwodach DC może prowadzić do niejasności i potencjalnych błędów, które mogą skutkować zwarciem, uszkodzeniem elementów elektronicznych lub nawet pożarem. W kontekście praktycznym, znajomość standardów dotyczących kolorystyki przewodów jest niezbędna dla zapewnienia nie tylko funkcjonalności, ale także bezpieczeństwa instalacji elektrycznych. Typowe błędy myślowe, które prowadzą do takich wyborów, to brak znajomości konkretnych norm oraz nieuwzględnianie praktyki inżynieryjnej, która kładzie nacisk na ścisłe przestrzeganie oznaczeń i kolorów w celu uniknięcia pomyłek, które mogą kosztować nie tylko czas, ale i pieniądze.

Pytanie 19

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Zmienić sposób podłączenia w obwodzie wzbudzenia
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zwiększyć opór w obwodzie wzbudzenia
D. Podłączyć prądnicę na krótko do pracy silnikowej
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 20

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 3 A
B. 0,75 A
C. 2,5 A
D. 10 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 21

Sprężarka typu śrubowego jest sprężarką

A. turbinową
B. przepływową
C. wyporową
D. rotacyjną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka śrubowa jest typem sprężarki rotacyjnej, w której proces sprężania gazu odbywa się za pomocą dwóch śrub, które obracają się w przeciwnych kierunkach. Ta konstrukcja pozwala na ciągłe, płynne sprężanie powietrza, co przekłada się na wysoką wydajność oraz niskie straty energii. W zastosowaniach przemysłowych, sprężarki śrubowe są powszechnie wykorzystywane w systemach pneumatycznych, gdzie wymagane jest dostarczenie dużych ilości sprężonego powietrza w stabilny sposób. Przykładowo, w branży motoryzacyjnej, sprężarki te dostarczają powietrze do narzędzi pneumatycznych, a w przemyśle spożywczym często wykorzystuje się je do pakowania produktów. Standardy ISO dotyczące efektywności energetycznej sprężarek wskazują na korzyści związane z zastosowaniem sprężarek rotacyjnych, takich jak obniżenie kosztów eksploatacji przez zmniejszenie zużycia energii. Dzięki ich niezawodności i efektywności, sprężarki śrubowe stały się standardem w wielu zakładach przemysłowych.

Pytanie 22

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. szumów
B. prędkości
C. temperatury
D. drgań

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 23

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. siłownikiem
C. przerwanym przewodem pneumatycznym
D. nieprawidłowo zamocowanym przewodem pneumatycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 24

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę optyczną
B. Tworzą przeszkodę elektryczną
C. Zbierają energię w polu elektrycznym
D. Zbierają energię w polu magnetycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 25

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Gaussotron.
B. Tensometr.
C. Warystor.
D. Termistor.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 26

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Stycznik
C. Falownik
D. Prostownik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 27

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 28

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Optycznego
B. Rezystancyjnego
C. Pojemnościowego
D. Indukcyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 29

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAD
B. SCADA
C. CAE
D. CAM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 30

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Odłączenie uziemienia silnika
B. Zastosowanie wyłącznika instalacyjnego zwłocznego
C. Zmiana kolejności faz
D. Podłączenie kondensatora rozruchowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie wyłącznika instalacyjnego zwłocznego to rozwiązanie, które pozwala na bezpieczne użytkowanie urządzeń z silnikiem trójfazowym, zwłaszcza w sytuacjach, gdy przy rozruchu silnika występują chwilowe przeciążenia. Wyłącznik zwłoczny działa na zasadzie odroczenia zadziałania na krótki okres, co pozwala na rozruch silnika bez ryzyka natychmiastowego wyłączenia z powodu chwilowego wzrostu prądu. W praktyce, tego rodzaju wyłączniki są często stosowane w instalacjach przemysłowych, gdzie silniki mogą doświadczać większych obciążeń przy starcie. Ponadto, takie wyłączniki zgodne są z normami bezpieczeństwa, które zalecają stosowanie urządzeń chroniących przed przeciążeniem. Należy pamiętać, że w sytuacji, gdy silnik jest sprawny, a problemem jest tylko zbyt duży prąd rozruchowy, ważne jest, aby dobrać odpowiedni wyłącznik, który zminimalizuje ryzyko fałszywych alarmów oraz zapewni ciągłość pracy maszyny. W praktyce, instalatorzy powinni również zwracać uwagę na charakterystykę pracy silnika oraz jego zastosowanie, aby dobrać odpowiedni wyłącznik zwłoczny.

Pytanie 31

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Chwytaka
C. Sondy
D. Silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 32

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego anizotropowego
B. z pakietu blach elektrotechnicznych nie izolowanych od siebie
C. z litego materiału magnetycznego izotropowego
D. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.

Pytanie 33

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie miękkie
B. Spawanie elektryczne
C. Lutowanie twarde
D. Spawanie gazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 34

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. silnika z pompą hydrauliczną
B. programatora z siłownikiem
C. programatora ze sterownikiem
D. grupy siłowników z modułem rozszerzającym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 35

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Zgrzewania
B. Lutowania twardego
C. Klejenia
D. Lutowania miękkiego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 36

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wrzucić je do kosza na śmieci
C. pozostawić je obok kontenera na śmieci
D. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 37

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
B. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
C. oblać dłoń wodą utlenioną i nałożyć opatrunek
D. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 38

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Pomiar napięcia sygnału przesyłanego
B. Cykliczna redundancja
C. Weryfikacja sumy kontrolnej
D. Sprawdzanie parzystości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar poziomu napięcia przesyłanego sygnału nie jest metodą wykorzystywaną do detekcji błędów transmisji danych, ponieważ w tym przypadku skupiamy się na analizie parametrów sygnału, a nie na weryfikacji jego poprawności. W kontekście komunikacji sieciowej, detekcja błędów ma na celu identyfikację i korekcję błędów, które mogą wystąpić podczas przesyłania danych. Przykładowe metody detekcji błędów obejmują kontrolę parzystości, która polega na dodaniu bitu parzystości do zbioru danych, aby zapewnić, że liczba bitów o wartości 1 jest parzysta lub nieparzysta. Analiza sumy kontrolnej, która polega na obliczaniu sumy wartości bajtów w ramce danych, również jest powszechnie stosowana. Cykliczna kontrola nadmiarowości (CRC) to bardziej zaawansowana technika, która wykorzystuje wielomiany do detekcji błędów w przesyłanych danych. Każda z tych metod ma swoje zastosowania w różnych protokołach komunikacyjnych, co czyni je istotnymi w zapewnieniu integralności danych. Rozumienie tych metod jest kluczowe dla inżynierów i specjalistów w dziedzinie sieci komputerowych, ponieważ pozwala na projektowanie bardziej niezawodnych systemów przesyłowych.

Pytanie 39

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór szybkiego spustu
B. zawór dławiąco zwrotny
C. zawór podwójnego sygnału
D. przełącznik obiegu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 40

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
B. usunąć ciało obce, położyć rannego i wezwać lekarza
C. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
D. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie jałowego opatrunku na ranę i uniesienie kończyn to bardzo dobry sposób na radzenie sobie z krwotokiem zewnętrznym. Najpierw trzeba zasłonić ranę, żeby nie doszło do jej zanieczyszczenia. Dzięki temu zmniejszamy ryzyko zakażeń. Potem, unosząc kończyny, ograniczamy przepływ krwi do rany, co może pomóc w zatrzymaniu krwawienia aż do przybycia fachowej pomocy. To wszystko jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, która podkreśla, jak ważne jest trzymanie poszkodowanego w stabilnej pozycji. W takich sytuacjach, kiedy czas odpowiedzi służb medycznych jest dłuższy, te kroki mają naprawdę kluczowe znaczenie i mogą uratować życie.