Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 20 maja 2025 11:54
  • Data zakończenia: 20 maja 2025 12:09

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym przy użyciu protokołu TCP oraz komunikacja w trybie bezpołączeniowym z protokołem UDP?

A. Warstwa fizyczna
B. Warstwa łącza danych
C. Warstwa transportowa
D. Warstwa sieciowa
Warstwy modelu ISO/OSI, takie jak Łącza danych, Fizyczna i Sieciowa, nie są odpowiednie dla zadań związanych z segmentowaniem danych oraz komunikacją w trybie połączeniowym i bezpołączeniowym. Warstwa Łącza danych zajmuje się przede wszystkim odpowiedzialnością za przesyłanie ramek danych między urządzeniami w tej samej sieci, a także wykrywaniem i ewentualną korekcją błędów na tym poziomie. To jest kluczowe dla zapewnienia poprawności transmisji na poziomie lokalnym, ale nie obejmuje zarządzania połączeniem czy segmentowaniem danych. Warstwa Fizyczna definiuje fizyczne aspekty transmisji, takie jak sygnały elektryczne, światłowodowe czy radiowe, ale nie zajmuje się strukturą danych ani ich organizacją w kontekście aplikacji. Z kolei warstwa Sieciowa odpowiada za trasowanie pakietów między różnymi sieciami oraz obsługę adresacji, co jest fundamentalne dla komunikacji w rozproszonych systemach komputerowych, ale nie dotyczy szczegółów dotyczących połączenia i segmentacji informacji. Typowe błędy w myśleniu mogą obejmować mylenie funkcji warstw oraz ignorowanie specyfikacji protokołów, co prowadzi do nieprawidłowych interpretacji ich roli w ramach modelu ISO/OSI. Zrozumienie, która warstwa odpowiedzialna jest za konkretne aspekty komunikacji, jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi oraz aplikacjami sieciowymi.

Pytanie 2

Jakie jest odpowiadające adresowi 194.136.20.35 w systemie dziesiętnym przedstawienie w systemie binarnym?

A. 11000010.10001000.00010100.00100011
B. 110001000.10001000.00100001
C. 11000000.10101000.00010100.00100011
D. 10001000.10101000.10010100.01100011
Odpowiedź 11000010.10001000.00010100.00100011 jest poprawna, ponieważ ten ciąg binarny odpowiada adresowi IP 194.136.20.35 w systemie dziesiętnym. Aby przekształcić adres IP z formatu dziesiętnego na binarny, należy każdy z czterech segmentów (194, 136, 20, 35) konwertować osobno. Segment 194 w systemie dziesiętnym to 11000010 w systemie binarnym, 136 to 10001000, 20 to 00010100, a 35 to 00100011. Po połączeniu tych segmentów w odpowiedniej kolejności otrzymujemy 11000010.10001000.00010100.00100011. Zrozumienie konwersji pomiędzy systemami liczbowymi jest kluczowe w kontekście sieci komputerowych, ponieważ adresy IP są wykorzystywane do identyfikacji urządzeń w sieci. Przykładowo, w praktyce konwersje te są często wykorzystywane podczas konfiguracji urządzeń sieciowych oraz w programowaniu, co jest zgodne ze standardem RFC 791, który definiuje protokół IPv4.

Pytanie 3

Parametr pamięci RAM określany czasem jako opóźnienie definiuje się jako

A. CAS Latency
B. Command Rate
C. RAS Precharge
D. RAS to CAS Delay
Wybór odpowiedzi związanej z RAS to CAS Delay, Command Rate, czy RAS Precharge może wprowadzać w błąd, gdyż te terminy opisują różne aspekty działania pamięci RAM, ale nie odnoszą się do głównego zagadnienia opóźnienia, które jest reprezentowane przez CAS Latency. RAS to CAS Delay odnosi się do czasu, jaki zajmuje przełączenie z jednego wiersza pamięci do drugiego, a Command Rate jest miarą liczby cykli zegara między wydawaniem poleceń do pamięci, co nie jest tym samym co czas oczekiwania na dane. RAS Precharge natomiast to czas potrzebny na przygotowanie pamięci do nowego odczytu po zakończeniu bieżącego, co również nie dotyczy bezpośrednio opóźnienia dostępu do konkretnej kolumny pamięci. Wybierając te odpowiedzi, można łatwo pomylić różne parametry i ich funkcje, co często zdarza się osobom, które nie mają jeszcze pełnej wiedzy na temat architektury pamięci. Warto zrozumieć, że każde z tych pojęć ma swoje znaczenie w kontekście działania pamięci RAM, jednak CAS Latency jest kluczowym wskaźnikiem wydajności dostępu do danych, co czyni go najbardziej istotnym w kontekście tego pytania. Zrozumienie różnicy między tymi terminami jest istotne, aby podejmować świadome decyzje przy wyborze komponentów komputerowych.

Pytanie 4

Jakie polecenie w systemach operacyjnych Windows służy do prezentacji konfiguracji interfejsów sieciowych?

A. hold
B. ipconfig
C. tracert
D. ifconfig
Odpowiedź 'ipconfig' jest poprawna, ponieważ jest to narzędzie w systemach operacyjnych Windows, które służy do wyświetlania i konfiguracji ustawień interfejsów sieciowych. Umożliwia administratorom i użytkownikom łatwe sprawdzenie adresów IP, maski podsieci oraz bramy domyślnej dla wszystkich aktywnych interfejsów sieciowych. Przykładowo, użycie polecenia 'ipconfig /all' dostarcza szczegółowych informacji o każdym interfejsie, w tym o adresach MAC, statusie połączenia oraz konfiguracji DHCP. Jest to standardowe narzędzie w administracji sieciami, które często jest wykorzystywane w praktyce do diagnozowania problemów z połączeniami sieciowymi. Znajomość tego narzędzia jest kluczowa dla każdego, kto zajmuje się zarządzaniem sieciami komputerowymi, zarówno w środowisku lokalnym, jak i w większych infrastrukturach. Warto również dodać, że 'ipconfig' współpracuje z innymi poleceniami, takimi jak 'ping' lub 'tracert', co zwiększa jego użyteczność w diagnostyce sieci.

Pytanie 5

Jakie jednostki stosuje się do wyrażania przesłuchu zbliżonego NEXT?

A. ?
B. V
C. A
D. dB
Wybór odpowiedzi A, V lub ? odzwierciedla nieporozumienie dotyczące podstawowych pojęć związanych z pomiarami sygnałów w systemach telekomunikacyjnych. Odpowiedź A, która oznacza jednostkę natężenia prądu, nie jest związana z przesłuchami sygnałowymi. Natężenie prądu (A) odnosi się do przepływu elektryczności w obwodzie, co nie ma bezpośredniego wpływu na zakłócenia sygnałów, które są analizowane w kontekście przesłuchu. Z kolei odpowiedź V, czyli wolty, jest miarą napięcia, co również nie ma zastosowania w kontekście przesłuchów, które badają jakość sygnału w układach transmisyjnych. Przesłuch zbliżny NEXT jest miarą sygnału w dB, co oznacza, że wybór jednostki napięcia lub natężenia prądu jest mylący. Zrozumienie, że dB jest jednostką logarytmiczną, która pozwala na ocenę stosunku sygnałów, jest kluczowe dla prawidłowej analizy zakłóceń. Często pojawiającym się błędem w myśleniu jest mylenie jednostek, co prowadzi do niepoprawnych wniosków na temat jakości i wydajności systemów telekomunikacyjnych. Wiedza na temat przesłuchów oraz ich miary w dB jest niezbędna dla inżynierów, którzy muszą zapewnić wysoką jakość komunikacji w sieciach telekomunikacyjnych.

Pytanie 6

Polecenie uname -s w systemie Linux służy do identyfikacji

A. stanu aktywnych interfejsów sieciowych.
B. dostępnego miejsca na dysku twardym.
C. ilości dostępnej pamięci.
D. nazwa jądra systemu operacyjnego.
Polecenie 'uname -s' w systemie Linux jest narzędziem, które pozwala na uzyskanie informacji o nazwie jądra systemu operacyjnego. Użycie tego polecenia zwraca nazwę systemu, co jest niezwykle przydatne w kontekście diagnostyki, konfiguracji oraz zarządzania systemami. Na przykład, administratorzy systemów mogą używać tego polecenia, aby upewnić się, że działają na odpowiedniej wersji jądra dla wymagań aplikacji lub środowiska wirtualnego. Również w procesie automatyzacji zadań, skrypty mogą wykorzystywać wynik tego polecenia do podejmowania decyzji o dalszych krokach, np. instalacji pakietów zależnych od konkretnej wersji jądra. Znajomość systemu operacyjnego, w tym nazwy jądra, jest kluczowa dla zapewnienia bezpieczeństwa, stabilności oraz wydajności systemu. Dodatkowo, warto zaznaczyć, że polecenie 'uname' ma różne opcje, które umożliwiają uzyskanie bardziej szczegółowych informacji, takich jak wersja jądra czy architektura, co jeszcze bardziej wzbogaca jego zastosowanie w administracji systemowej.

Pytanie 7

Aby zapewnić użytkownikom Active Directory możliwość logowania oraz dostęp do zasobów tej usługi w sytuacji awarii kontrolera domeny, co należy zrobić?

A. przenieść wszystkich użytkowników do grupy administratorzy
B. zainstalować drugi kontroler domeny
C. skopiować wszystkie zasoby sieci na każdy komputer w domenie
D. udostępnić wszystkim użytkownikom kontakt do Help Desk
W odpowiedziach, które nie prowadzą do zainstalowania drugiego kontrolera domeny, pojawiają się nieporozumienia dotyczące podstawowych zasad zarządzania infrastrukturą Active Directory. Dodawanie wszystkich użytkowników do grupy administratorzy jest skrajnym błędem, ponieważ narusza zasadę minimalnych uprawnień, co może prowadzić do poważnych luk w bezpieczeństwie. Użytkownicy, którzy otrzymują zbyt wysokie uprawnienia, mogą nieumyślnie lub celowo wprowadzać zmiany, które są niebezpieczne dla całej sieci. Udostępnienie numeru do Help Desk również nie rozwiązuje problemu z dostępnością usług. W przypadku awarii kontrolera domeny, użytkownicy nie będą w stanie zalogować się, a pomoc techniczna nie pomoże w przywróceniu dostępu. Kopiowanie zasobów sieci na każdy komputer w domenie jest niepraktyczne, kosztowne i prowadzi do rozproszenia danych, co utrudnia ich zarządzanie oraz synchronizację. Stosowanie tego rodzaju strategii zamiast zapewnienia redundantnej infrastruktury zwiększa ryzyko utraty danych oraz przestojów w pracy. Kluczowym wnioskiem jest to, że odpowiednia architektura systemu Active Directory z wieloma kontrolerami domeny jest podstawą skutecznego zarządzania infrastrukturą i zapewnienia jej bezpieczeństwa oraz ciągłości działania.

Pytanie 8

Symbol zaprezentowany powyżej, używany w dokumentacji technicznej, wskazuje na

Ilustracja do pytania
A. zielony punkt upoważniający do wniesienia opłaty pieniężnej na rzecz organizacji odzysku opakowań
B. brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych
C. konieczność utylizacji wszystkich elementów elektrycznych
D. wymóg selektywnej zbiórki sprzętu elektronicznego
Rozważając niepoprawne odpowiedzi, ważne jest zrozumienie ich podstawowych założeń i dlaczego mogą prowadzić do błędnych wniosków. Koncepcja konieczności utylizacji wszystkich elementów elektrycznych wydaje się intuicyjna, jednak nie jest zgodna z rzeczywistością prawną czy też praktykami branżowymi. Przepisy skupiają się nie tylko na utylizacji, ale przede wszystkim na recyklingu i ponownym użyciu wartościowych surowców. Z kolei brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych jako definicja tego symbolu jest błędnym uproszczeniem. Choć odpadów metalicznych rzeczywiście nie powinno się wyrzucać w sposób nieselektywny, to przekreślony kosz nie odnosi się bezpośrednio do tej kategorii odpadów. Natomiast zielony punkt upoważniający do wniesienia opłaty na rzecz organizacji odzysku opakowań to zupełnie inny symbol, który dotyczy systemu finansowania recyklingu materiałów opakowaniowych, a nie sprzętu elektronicznego. Tego rodzaju zrozumienie wskazuje na mylne utożsamienie różnych koncepcji zrównoważonego zarządzania odpadami. Ważne jest, aby jednoznacznie rozróżniać między nimi, szczególnie w kontekście regulacji takich jak dyrektywa WEEE, która skupia się na odpowiedzialnym zarządzaniu zużytym sprzętem elektronicznym przez wszystkich zainteresowanych uczestników rynku, od producentów po konsumentów.

Pytanie 9

Jakiego protokołu używa warstwa aplikacji w modelu TCP/IP?

A. SPX
B. UDP
C. ARP
D. FTP
FTP, czyli File Transfer Protocol, to protokół działający na warstwie aplikacji modelu TCP/IP, który służy do przesyłania plików pomiędzy komputerami w sieci. Jest to standardowy protokół do transferu danych, który umożliwia użytkownikom zarówno przesyłanie, jak i pobieranie plików z serwera. FTP działa w oparciu o architekturę klient-serwer, gdzie klient inicjuje połączenie z serwerem FTP, a następnie wykonuje różne operacje na plikach, takie jak upload, download, usuwanie czy zmiana nazw plików. Przykładem zastosowania FTP jest przesyłanie dużych plików z jednego serwera na drugi lub publikowanie zawartości strony internetowej. W praktyce, administracja systemami często korzysta z FTP do zarządzania plikami na serwerach bezpośrednio. Warto również zaznaczyć, że istnieją różne rozszerzenia FTP, takie jak FTPS i SFTP, które dodają warstwę zabezpieczeń, co jest szczególnie istotne w kontekście ochrony danych. Znajomość FTP jest niezbędna dla specjalistów IT, zwłaszcza w zakresie zarządzania sieciami i administracji serwerami.

Pytanie 10

System limitów dyskowych, umożliwiający kontrolowanie wykorzystania zasobów dyskowych przez użytkowników, nazywany jest

A. management
B. quota
C. release
D. spool
Wybór odpowiedzi, która nie odnosi się do mechanizmu limitów dyskowych, może wynikać z nieporozumienia dotyczącego terminologii używanej w zarządzaniu systemami informatycznymi. Odpowiedź 'spool' odnosi się do procesu buforowania danych, co ma zastosowanie w kontekście drukowania lub zarządzania zadaniami w kolejkach, ale nie ma związku z kontrolą wykorzystania przestrzeni dyskowej. Można to mylnie interpretować jako zarządzanie zasobami, ale w rzeczywistości jest to zupełnie inny proces, który nie dotyczy limitów. Odpowiedź 'release' często oznacza uwolnienie zasobów lub zakończenie procesu, co również nie ma zastosowania w kontekście limitów dyskowych. 'Management' to termin ogólny, który odnosi się do szerszego zarządzania zasobami, ale nie precyzuje konkretnego mechanizmu jak 'quota', co prowadzi do nieprecyzyjnego rozumienia tematu. Kluczowym błędem myślowym jest mylenie różnych terminów technicznych, co może prowadzić do nieefektywnego zarządzania zasobami w systemach informatycznych. Zrozumienie różnicy pomiędzy tymi pojęciami jest niezbędne dla efektywnego administrowania systemami oraz dla wdrażania najlepszych praktyk w zarządzaniu przestrzenią dyskową.

Pytanie 11

W systemie Linux do śledzenia wykorzystania procesora, pamięci, procesów oraz obciążenia systemu wykorzystuje się polecenie

A. ifconfig
B. rev
C. grep
D. top
Polecenie 'top' jest jednym z najczęściej używanych narzędzi w systemie Linux do monitorowania wydajności systemu w czasie rzeczywistym. Umożliwia ono użytkownikom śledzenie obciążenia procesora, użycia pamięci RAM oraz aktywnych procesów. Dzięki 'top' można uzyskać szczegółowe informacje na temat zużycia zasobów przez różne aplikacje i procesy, co jest kluczowe w diagnostyce problemów z wydajnością. Użytkownicy mogą szybko zidentyfikować procesy, które zużywają zbyt dużo pamięci lub procesora, co pozwala na podjęcie odpowiednich działań, takich jak zakończenie nieefektywnych procesów lub optymalizacja zasobów. Istnieje również możliwość sortowania wyników według różnych kryteriów, co ułatwia analizę danych. Narzędzie to jest zgodne z najlepszymi praktykami zarządzania systemami, umożliwiając administratorom efektywne monitorowanie i zarządzanie zasobami w różnych środowiskach serwerowych i stacjonarnych.

Pytanie 12

Aby użytkownik laptopa z systemem Windows 7 lub nowszym mógł korzystać z drukarki przez sieć WiFi, musi zainstalować drukarkę na porcie

A. WSD
B. LPT3
C. Nul
D. COM3
Wybór portów Nul, LPT3 i COM3 do instalacji drukarki w systemie Windows jest nieprawidłowy z kilku powodów. Port Nul to wirtualny port, który nie może być używany do komunikacji z urządzeniem zewnętrznym, a jego funkcja polega głównie na przekierowywaniu danych do 'nikąd', co czyni go bezużytecznym w kontekście drukowania. Porty LPT3 oraz COM3 są portami równoległymi i szeregowymi, odpowiednio, które w przeszłości były używane do podłączenia drukarek, ale w dobie nowoczesnych technologii, takich jak USB i WiFi, ich zastosowanie stało się bardzo ograniczone. Współczesne drukarki zazwyczaj nie są wyposażone w złącza równoległe, a ich podłączenie przez port szeregowy wymaga specjalnych kabli i adapterów, co wprowadza dodatkowe komplikacje. Typowym błędem myślowym jest zakładanie, że starsze standardy komunikacji są wciąż aktualne w kontekście nowoczesnych urządzeń. Przy wyborze odpowiedniego portu do podłączenia drukarki niezbędne jest zrozumienie nowoczesnych protokołów komunikacyjnych oraz ich zastosowania w klasycznych systemach operacyjnych, co pozwoli uniknąć frustracji i problemów z konfiguracją.

Pytanie 13

Urządzenia wykorzystujące port USB 2.0 są zasilane napięciem, którego wartość znajduje się w przedziale

A. 3,55 V - 4,15 V
B. 4,75 V - 5,35 V
C. 4,15 V - 4,75 V
D. 5,35 V - 5,95 V
Rozważając wartości napięcia zasilania urządzeń USB 2.0, warto zwrócić uwagę na to, że odpowiedzi niezgodne z poprawnym zakresem 4,75 V - 5,35 V mogą wynikać z kilku powszechnych nieporozumień. Napięcie zasilania dla standardu USB 2.0 zostało precyzyjnie zdefiniowane w normach USB, aby zapewnić stabilność i bezpieczeństwo urządzeń. Podawanie wartości niższych, jak 4,15 V - 4,75 V, może prowadzić do twierdzeń, że urządzenia będą funkcjonować w obszarze, który nie spełnia wymogów technicznych, co z kolei może skutkować niestabilnością pracy urządzeń. Przy zasilaniu napięciem poniżej 4,75 V, wiele urządzeń może napotkać na trudności w operacjach wymagających większej mocy, co może prowadzić do ich nieprawidłowego działania. Z kolei wartości powyżej 5,35 V, jak 5,35 V - 5,95 V, mogą prowadzić do ryzyka uszkodzenia podłączonych komponentów z powodu przekroczenia dopuszczalnego napięcia. Należy również pamiętać, że urządzenia USB muszą być projektowane z myślą o pracy w określonym zakresie napięcia, aby zapewnić zgodność z normami. Niewłaściwe napięcia mogą nie tylko wpłynąć na wydajność, ale mogą również prowadzić do uszkodzenia komponentów, co jest istotnym czynnikiem w projektowaniu elektroniki. Dlatego zrozumienie zakresu 4,75 V - 5,35 V jest kluczowe dla zarówno inżynierów projektujących nowe urządzenia, jak i użytkowników, którzy muszą być świadomi potencjalnych zagrożeń związanych z nieodpowiednim zasilaniem.

Pytanie 14

Jakie informacje można uzyskać na temat konstrukcji skrętki S/FTP?

A. Każda para przewodów jest pokryta foliowaniem, a całość znajduje się w ekranie z siatki
B. Każda para przewodów ma osobny ekran z folii, a całość nie jest ekranowana
C. Każda para przewodów ma osobny ekran z folii, a dodatkowo całość jest w ekranie z folii
D. Każda para przewodów jest foliowana, a całość znajduje się w ekranie z folii i siatki
Odpowiedź wskazująca, że każda para przewodów jest foliowana i całość jest w ekranie z siatki, jest poprawna, ponieważ opisuje typową budowę skrętki S/FTP (Shielded Foiled Twisted Pair). W tej konstrukcji każda z par przewodów jest pokryta warstwą folii, co ma na celu zminimalizowanie zakłóceń elektromagnetycznych, które mogą wpływać na jakość sygnału. Dodatkowe ekranowanie całej skrętki siatką (zwykle ze stali lub miedzi) zapewnia jeszcze lepszą ochronę przed interferencjami zewnętrznymi, dzięki czemu skrętki S/FTP są idealne do zastosowań w środowiskach o wysokim poziomie zakłóceń, takich jak biura z dużą ilością urządzeń elektronicznych. W praktyce, takie okablowanie jest często wykorzystywane w sieciach komputerowych, gdzie stabilność połączenia i jakość przesyłanego sygnału są kluczowe. Standardy takie jak ISO/IEC 11801 definiują wymagania dotyczące okablowania strukturalnego, w tym typów ekranowania, co potwierdza wysoką jakość i niezawodność skrętki S/FTP w zastosowaniach profesjonalnych."

Pytanie 15

Adres IP 192.168.2.0/24 podzielono na cztery różne podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.192
B. 255.255.255.128
C. 255.255.255.224
D. 255.255.255.240
W przypadku podziału sieci adresowej 192.168.2.0/24 na cztery podsieci, wybór maski 255.255.255.128 jest niewłaściwy, ponieważ ta maska (/25) pozwala na utworzenie jedynie dwóch podsieci z 126 hostami w każdej. Również wybór maski 255.255.255.224 (/27) nie jest odpowiedni, jako że prowadzi do podziału na osiem podsieci, co jest zbyt dużą fragmentacją w tym kontekście. W kontekście adresacji IP, ważne jest zrozumienie, że każda maska sieciowa określa, ile bitów jest przeznaczonych na identyfikator sieci, a ile na identyfikację hostów. W przypadku niepoprawnych wyborów, typowym błędem jest nieprawidłowe zrozumienie zasady podziału sieci oraz konsekwencji związanych z ilością możliwych adresów w danej podsieci. Ponadto, niektórzy mogą mylić liczbę podsieci z liczbą hostów, co prowadzi do nieefektywnego wykorzystania dostępnej przestrzeni adresowej. Zrozumienie zasad adresacji IP oraz zamiarów związanych z segmentacją sieci jest kluczowe dla efektywnego projektowania i zarządzania siecią, a także dla zapewnienia jej bezpieczeństwa i wydajności. Warto zaznaczyć, że stosowanie niewłaściwych masek może prowadzić do problemów z komunikacją między hostami oraz trudności w zarządzaniu ruchem sieciowym.

Pytanie 16

Która norma określa parametry transmisji dla komponentów kategorii 5e?

A. EIA/TIA 607
B. TIA/EIA-568-B-2
C. TIA/EIA-568-B-1
D. CSA T527
Wybór normy CSA T527 nie jest właściwy, ponieważ ta norma dotyczy przede wszystkim klasyfikacji urządzeń elektrycznych w Kanadzie, a nie parametrów transmisyjnych kabli sieciowych. Także norma EIA/TIA 607, która odnosi się do zasad instalacji systemów okablowania, nie zawiera specyfikacji dotyczących wydajności transmisyjnej komponentów kategorii 5e. Można łatwo pomylić te normy ze względu na ich techniczny charakter, jednak każda z nich pełni inną funkcję. Z kolei norma TIA/EIA-568-B-1, choć jest związana z instalacjami kablowymi, nie specyfikuje odpowiednich parametrów dla kategorii 5e, lecz koncentruje się na ogólnych zasadach i wymaganiach dla okablowania struktur. Typowym błędem jest mylenie ogólnych wymagań dotyczących instalacji z specyfikacjami technicznymi, które określają wydajność poszczególnych komponentów. Kluczowym aspektem przy wyborze normy jest znajomość ich przeznaczenia oraz zakreślenie odpowiednich wymagań dla stosowanych technologii. W kontekście projektowania sieci, zrozumienie różnic pomiędzy normami oraz ich odpowiednich zastosowań jest niezbędne dla sukcesu instalacji oraz zapewnienia efektywności komunikacji w sieci.

Pytanie 17

Jaką liczbę podwójnych gniazd RJ45 należy zainstalować w pomieszczeniu o wymiarach 8 x 5 m, aby spełniać wymagania normy PN-EN 50173?

A. 5 gniazd
B. 8 gniazd
C. 4 gniazda
D. 10 gniazd
Odpowiedzi wskazujące na 5, 8 lub 10 gniazd są wynikiem nieprawidłowego rozumienia standardów instalacji telekomunikacyjnych. Norma PN-EN 50173 jasno definiuje zasady dotyczące projektowania infrastruktury telekomunikacyjnej w budynkach, a jedna z kluczowych zasad dotyczy optymalizacji liczby gniazd w stosunku do dostępnej powierzchni. Przy pomieszczeniu o wymiarach 8 x 5 m, które daje 40 m², zasada mówiąca o jednej parze gniazd na każde 10 m² prowadzi do liczby czterech gniazd. Wybierając zbyt dużą liczbę gniazd, jak w przypadku odpowiedzi 5, 8 czy 10, można wprowadzić niepotrzebne komplikacje oraz zwiększyć koszty instalacji, a także zarządzania infrastrukturą. Przykładem jest sytuacja, w której zainstalowane gniazda są nieużywane, co obniża efektywność całej sieci. Powoduje to również niepotrzebne zagracanie przestrzeni roboczej, co może wpływać na komfort pracy. Kluczowe jest, aby dostosować liczbę gniazd do rzeczywistych potrzeb użytkowników, co wymaga wcześniejszej analizy korzystania z przestrzeni oraz planu zagospodarowania biura. W przeciwnym razie, nadmiar gniazd staje się obciążeniem zamiast zwiększać funkcjonalność.

Pytanie 18

Który z protokołów NIE jest używany do ustawiania wirtualnej sieci prywatnej?

A. L2TP
B. SNMP
C. SSTP
D. PPTP
PPTP, L2TP oraz SSTP to protokoły, które rzeczywiście są wykorzystywane do konfiguracji i obsługi wirtualnych sieci prywatnych. PPTP (Point-to-Point Tunneling Protocol) jest jednym z najstarszych protokołów VPN, oferującym prostą implementację, chociaż nie zawsze zapewnia najwyższy poziom bezpieczeństwa. L2TP (Layer 2 Tunneling Protocol) z kolei często jest używany w połączeniu z IPsec, co zapewnia lepsze szyfrowanie i bezpieczeństwo. SSTP (Secure Socket Tunneling Protocol) to protokół stworzony przez Microsoft, który wykorzystuje połączenie SSL do szyfrowania danych, co czyni go bardziej odpornym na ataki. Zwykle w przypadku wyboru protokołu VPN, administratorzy sieci kierują się kryteriami takimi jak bezpieczeństwo, łatwość konfiguracji oraz wydajność. Typowym błędem jest mylenie roli protokołów zarządzających, takich jak SNMP, z protokołami VPN. Użytkownicy mogą nie zdawać sobie sprawy, że SNMP, mimo że jest ważnym narzędziem w zarządzaniu sieciami, nie ma zastosowania w kontekście tworzenia bezpiecznych tuneli dla danych. Ważne jest, aby wybierać odpowiednie narzędzia w zależności od potrzeb, a wiedza o protokołach oraz ich zastosowaniach jest kluczowa dla efektywnego zarządzania i ochrony sieci.

Pytanie 19

Podstawowym celem użycia przełącznika /renew w poleceniu ipconfig w systemie Windows jest

A. pokazywanie informacji o adresie MAC karty sieciowej
B. odnowienie dynamicznego adresu IP poprzez interakcję z serwerem DHCP
C. wystąpienie o odpowiedź z określonego adresu IP w celu diagnozy połączenia sieciowego
D. pokazywanie danych dotyczących adresu IP
Komenda 'ipconfig /renew' w systemie Windows ma za zadanie odnowienie dynamicznego adresu IP przez komunikację z serwerem DHCP (Dynamic Host Configuration Protocol). Kiedy komputer łączy się z siecią, często korzysta z DHCP, aby automatycznie uzyskać adres IP oraz inne istotne informacje konfiguracyjne, takie jak maska podsieci czy brama domyślna. Kiedy wygasa dzierżawa adresu IP, system operacyjny może skorzystać z komendy /renew, aby nawiązać ponowną komunikację z serwerem DHCP w celu uzyskania nowego adresu. To szczególnie przydatne w dynamicznych sieciach, gdzie adresy IP mogą się zmieniać, co zapewnia elastyczność i efektywne zarządzanie zasobami sieciowymi. Dobre praktyki w zarządzaniu siecią zalecają regularne odnawianie adresów IP, aby uniknąć konfliktów adresowych oraz zapewnić stabilność i ciągłość usługi. Przykładowo, w przypadku mobilnych urządzeń lub laptopów, które często zmieniają sieci, korzystanie z tej komendy może pomóc w szybkim uzyskaniu dostępu do Internetu.

Pytanie 20

Którego urządzenia dotyczy strzałka na rysunku?

Ilustracja do pytania
A. Routera
B. Serwera
C. Przełącznika
D. Koncentratora
Router to urządzenie sieciowe, które kieruje pakiety danych między różnymi sieciami. Działa na trzeciej warstwie modelu OSI, wykorzystując adresy IP do podejmowania decyzji o trasowaniu danych. Routery są kluczowe w zarządzaniu ruchem internetowym, umożliwiając komunikację pomiędzy sieciami lokalnymi a globalną siecią Internet. Dzięki nim możliwe jest przesyłanie danych na dużą skalę, co jest niezbędne w nowoczesnych organizacjach i przedsiębiorstwach. Routery mogą realizować różne protokoły routingu, takie jak RIP, OSPF czy BGP, co pozwala im dynamicznie dostosowywać się do zmieniających się warunków w sieci. W praktyce routery zapewniają nie tylko podstawową funkcję routingu, ale także mogą pełnić role takie jak firewall, kontrola dostępu czy VPN. Wiedza na temat działania routerów i ich konfiguracji jest fundamentalna dla specjalistów sieciowych, a umiejętność ich efektywnego wykorzystania zgodnie z dobrymi praktykami, takimi jak segmentacja sieci czy zapewnienie redundancji, jest nieodłącznym elementem zarządzania infrastrukturą IT.

Pytanie 21

Jaki element sieci SIP określamy jako telefon IP?

A. Terminalem końcowym
B. Serwerem przekierowań
C. Serwerem Proxy SIP
D. Serwerem rejestracji SIP
W kontekście architektury SIP, serwer rejestracji SIP, serwer proxy SIP oraz serwer przekierowań pełnią kluczowe funkcje, ale nie są terminalami końcowymi. Serwer rejestracji SIP jest odpowiedzialny za zarządzanie rejestracją terminali końcowych w sieci, co oznacza, że umożliwia im zgłaszanie swojej dostępności i lokalizacji. Użytkownicy mogą mieć tendencję do mylenia serwera rejestracji z terminalem końcowym, ponieważ oba elementy są kluczowe dla nawiązywania połączeń, lecz pełnią różne role w infrastrukturze. Serwer proxy SIP działa jako pośrednik w komunikacji, kierując sygnały między terminalami końcowymi, co może prowadzić do pomyłek w zrozumieniu, że jest to bezpośredni interfejs dla użytkownika, co nie jest prawdą. Z kolei serwer przekierowań może zmieniać ścieżki połączeń, ale również nie jest bezpośrednim urządzeniem, z którym użytkownik się komunikuje. Te wszystkie elementy współpracują ze sobą, aby zapewnić efektywną komunikację w sieci SIP, ale to telefon IP, jako terminal końcowy, jest urządzeniem, które ostatecznie umożliwia rozmowę i interakcję użytkownika. Niezrozumienie tych ról może prowadzić do błędnych wniosków dotyczących funkcjonowania całej sieci SIP i jej architektury.

Pytanie 22

Element płyty głównej, który jest odpowiedzialny za wymianę danych między procesorem a innymi komponentami płyty, to

A. pamięć RAM
B. układ chłodzenia
C. BIOS ROM
D. chipset
Chipset jest naprawdę ważnym elementem płyty głównej. Odpowiada za to, jak różne części komputera ze sobą rozmawiają, na przykład procesor, pamięć RAM czy karty graficzne. Można powiedzieć, że to taki pośrednik, który sprawia, że wszystko działa razem. Weźmy na przykład gry komputerowe - bez chipsetu przesyłanie danych między procesorem a kartą graficzną byłoby chaosem, a przecież każdy chce płynnej grafiki. Chipsety są różne, bo mają różne architektury, co ma potem wpływ na to, jak działają z różnymi procesorami. W branży mamy standardy jak Intel czy AMD, które mówią, jakie chipsety są dostępne i co potrafią. Moim zdaniem, dobrze dobrany chipset to podstawa, żeby cały system działał stabilnie i wydajnie, zwłaszcza gdy korzystamy z aplikacji wymagających sporo mocy obliczeniowej.

Pytanie 23

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 4 bity
B. 9 bitów
C. 3 bity
D. 16 bitów
Wybór innych odpowiedzi często wynika z błędnych założeń dotyczących przeliczeń między systemami liczbowymi. Na przykład, 4 bity są wystarczające do zapisania wartości od 0 do 15, ponieważ 2^4 = 16, co nie obejmuje liczby 256. Takie podejście do tematu wydaje się logiczne, jednak nie uwzględnia faktu, że liczby heksadecymalne mogą przekraczać ten zakres. Podobnie, 3 bity mogą reprezentować tylko liczby z zakresu 0-7 (2^3 = 8), co w żadnym wypadku nie pokrywa wartości 256. Odpowiedź 16 bitów również nie jest uzasadniona w tym kontekście, ponieważ 16 bitów jest w stanie reprezentować liczby z zakresu od 0 do 65535, co jest nadmiarem dla danej liczby, ale nie jest to minimalna ilość bitów, która jest wymagana. Zrozumienie, że do prawidłowego przeliczenia liczby heksadecymalnej do binarnej należy uwzględnić najmniejszą potęgę liczby 2, jest kluczowym aspektem, który pozwala uniknąć typowych błędów myślowych związanych z konwersją numerów. W rzeczywistości, umiejętność efektywnego przekształcania systemów liczbowych jest niezbędna w inżynierii komputerowej oraz informatyce, gdzie precyzyjne obliczenia i reprezentacje danych mają ogromne znaczenie.

Pytanie 24

Jakie są korzyści płynące z użycia systemu plików NTFS?

A. zapisywanie plików z nazwami dłuższymi niż 255 znaków
B. możliwość sformatowania nośnika o niewielkiej pojemności (1,44MiB)
C. przechowywanie tylko jednej kopii tabeli plików
D. możliwość szyfrowania folderów i plików
System plików NTFS (New Technology File System) to nowoczesne rozwiązanie, które oferuje wiele zaawansowanych funkcji zarządzania danymi. Jedną z kluczowych zalet jest możliwość szyfrowania folderów i plików, co zapewnia wysoki poziom bezpieczeństwa przechowywanych informacji. Funkcja ta wykorzystuje technologię EFS (Encrypting File System), która pozwala użytkownikom na szyfrowanie danych na poziomie systemu plików. Dzięki temu, nawet w przypadku fizycznego dostępu do nośnika, nieautoryzowane osoby nie będą mogły odczytać zaszyfrowanych plików bez odpowiednich uprawnień. Praktyczne zastosowanie tej funkcjonalności jest szczególnie istotne w środowiskach korporacyjnych oraz w pracy z danymi wrażliwymi, gdzie bezpieczeństwo informacji jest kluczowe. Warto również zauważyć, że NTFS wspiera długie nazwy plików, co w połączeniu z szyfrowaniem, umożliwia komfortowe i bezpieczne zarządzanie dużymi zbiorami danych. W branży IT stosowanie NTFS jest standardem, szczególnie w systemach operacyjnych Windows, gdzie funkcjonalności te są szczególnie doceniane.

Pytanie 25

Jaką rolę pełni komponent wskazany strzałką na schemacie chipsetu płyty głównej?

Ilustracja do pytania
A. Pozwala na podłączenie i używanie pamięci DDR 400 w trybie DUAL Channel w celu zapewnienia kompatybilności z DUAL Channel DDR2 800
B. Pozwala na wykorzystanie standardowych pamięci DDR SDRAM
C. Umożliwia wykorzystanie magistrali o szerokości 128 bitów do transferu danych między pamięcią RAM a kontrolerem pamięci
D. Umożliwia korzystanie z pamięci DDR3-800 oraz DDR2-800 w trybie DUAL Channel
Podzespół wskazany strzałką na schemacie chipsetu płyty głównej to NVIDIA nForce 650i Ultra SPP który pełni funkcję mostka północnego. Jego zadaniem jest koordynacja komunikacji między procesorem a pozostałymi komponentami systemu głównie pamięcią RAM oraz kartą graficzną. W kontekście magistrali o szerokości 128 bitów umożliwia on efektywne przesyłanie danych pomiędzy pamięcią RAM a kontrolerem pamięci. Taka szerokość magistrali pozwala na zwiększenie przepustowości co jest kluczowe w systemach wymagających dużej szybkości przetwarzania danych. Zastosowanie dual channel pozwala na jednoczesne przesyłanie danych z dwóch modułów pamięci co efektywnie podwaja szerokość magistrali z 64 do 128 bitów. Standardy takie jak JEDEC definiują te rozwiązania jako optymalne dla uzyskania maksymalnej wydajności systemów komputerowych. Praktyczne zastosowanie tej technologii znajduje się w intensywnych obliczeniowo aplikacjach jak np. edycja wideo gry komputerowe czy też zaawansowane symulacje komputerowe gdzie szybkość dostępu do pamięci jest kluczowa dla uzyskania płynności działania.

Pytanie 26

W dokumentacji systemu operacyjnego Windows XP opisano pliki o rozszerzeniu .dll. Czym jest ten plik?

A. uruchamialnego
B. biblioteki
C. inicjalizacyjnego
D. dziennika zdarzeń
Wybór odpowiedzi związanych z dziennikiem zdarzeń, plikami inicjalizacyjnymi czy uruchamialnymi wskazuje na pewne nieporozumienia dotyczące funkcji i charakterystyki plików w systemie Windows. Dzienniki zdarzeń są odpowiedzialne za rejestrowanie działań systemowych i nie mają związku z dynamicznymi bibliotekami, które są z natury współdzielonymi zasobami programowymi. Pliki inicjalizacyjne, takie jak .ini, pełnią rolę konfiguracji aplikacji, a nie zawierają kodu wykonywalnego, co jest fundamentalną cechą bibliotek .dll. Z kolei pliki uruchamialne, takie jak .exe, są bezpośrednio wykonywane przez system operacyjny, w przeciwieństwie do .dll, które muszą być załadowane przez inne aplikacje. Istotnym błędem jest łączenie tych terminów, ponieważ każdy z nich odnosi się do innych ról i funkcji w ekosystemie systemu operacyjnego. Aby prawidłowo zrozumieć te zagadnienia, warto zgłębić funkcje różnych typów plików oraz ich interakcje w kontekście architektury systemu, co wykazuje znaczenie plików .dll jako centralnych elementów elastyczności i efektywności działania aplikacji w środowisku Windows.

Pytanie 27

Ile bitów trzeba wydzielić z części hosta, aby z sieci o adresie IPv4 170.16.0.0/16 utworzyć 24 podsieci?

A. 5 bitów
B. 3 bity
C. 4 bity
D. 6 bitów
Wybierając mniej niż 5 bitów, takie jak 3 lub 4, tracimy zdolność do zapewnienia wystarczającej liczby podsieci dla wymaganej liczby 24. Dla 3 bitów otrzymujemy jedynie 2^3=8 podsieci, co jest niewystarczające, a dla 4 bitów 2^4=16 podsieci, co również nie zaspokaja wymagań. Takie podejście może prowadzić do nieefektywności w zarządzaniu siecią, ponieważ zbyt mała liczba podsieci może skutkować przeciążeniem i trudnościami w administracji. W praktyce, niewłaściwe oszacowanie wymaganej liczby bitów prowadzi do problemów z adresacją, co może skutkować konfiguracjami, które nie spełniają potrzeb organizacji. Również błędne obliczenia mogą prowadzić do nieprzewidzianych zatorów w komunikacji między różnymi segmentami sieci. Właściwe planowanie podsieci jest kluczowe w inżynierii sieciowej, gdyż pozwala na efektywne zarządzanie zasobami oraz minimalizację problemów związanych z adresacją i zasięgiem. Ewentualne pominięcie odpowiedniej liczby bitów może również powodować problemy z bezpieczeństwem, ponieważ zbyt mała liczba podsieci może prowadzić do niekontrolowanego dostępu do zasobów sieciowych.

Pytanie 28

Program do diagnostyki komputera pokazał komunikat NIC ERROR. Co oznacza ten komunikat w kontekście uszkodzenia karty?

A. wideo
B. sieciowej
C. dźwiękowej
D. graficznej
Komunikat NIC ERROR wskazuje na problem z kartą sieciową (Network Interface Card), co jest kluczowym elementem umożliwiającym komunikację komputera z innymi urządzeniami w sieci. Karta sieciowa odpowiada za przesyłanie danych pomiędzy komputerem a siecią lokalną lub Internetem. W przypadku awarii karty sieciowej, komputer może stracić zdolność do łączenia się z siecią, co jest niezwykle istotne w obecnych czasach, gdzie wiele operacji zależy od dostępu do Internetu. Diagnostyka w przypadku błędu NIC może obejmować sprawdzenie połączeń kablowych, zaktualizowanie sterowników, a także testowanie karty w innym porcie lub na innym komputerze. W praktyce warto również skorzystać z narzędzi do diagnostyki sieci, takich jak ping czy traceroute, aby zlokalizować źródło problemu. Znajomość oznaczeń błędów związanych z kartą sieciową jest niezbędna dla osób pracujących w IT, ponieważ pozwala na szybsze i skuteczniejsze diagnozowanie i rozwiązywanie problemów z łącznością sieciową.

Pytanie 29

Aby zapewnić łączność urządzenia mobilnego z komputerem za pośrednictwem interfejsu Bluetooth, konieczne jest

A. ustawić urządzenie mobilne przez przeglądarkę
B. stworzyć sieć WAN dla tych urządzeń
C. wykonać parowanie urządzeń
D. zestawić połączenie między urządzeniami kablem krosowym
Wykonanie parowania urządzeń jest kluczowym krokiem w nawiązywaniu połączenia Bluetooth pomiędzy urządzeniem mobilnym a komputerem. Proces ten polega na wymianie danych zabezpieczających, takich jak kody PIN lub hasła, które są niezbędne do autoryzacji połączenia. Parowanie zapewnia, że tylko zaufane urządzenia mogą wymieniać dane, co jest zgodne z najlepszymi praktykami bezpieczeństwa. Po zakończeniu parowania, urządzenia będą mogły automatycznie się łączyć bez potrzeby ponownego wprowadzania danych. Przykładem zastosowania może być sytuacja, w której użytkownik chce przesłać pliki z telefonu na komputer. Po parowaniu, takie operacje stają się znacznie łatwiejsze, a użytkownik oszczędza czas. Ponadto, Bluetooth ma różne profile, takie jak A2DP do przesyłania dźwięku czy SPP do przesyłania danych, co pozwala na różnorodne zastosowania w zależności od potrzeb użytkownika.

Pytanie 30

Z jaką minimalną efektywną częstotliwością taktowania mogą działać pamięci DDR2?

A. 800 MHz
B. 333 MHz
C. 533 MHz
D. 233 MHz
Wybór niższej częstotliwości taktowania, takiej jak 233 MHz, 333 MHz czy 800 MHz, nie jest zgodny z charakterystyką pamięci DDR2. Pamięć DDR2 została zaprojektowana jako kontynuacja standardów DDR, jednak z bardziej zaawansowanymi funkcjami. Częstotliwości 233 MHz oraz 333 MHz to wartości charakterystyczne dla pamięci DDR, a nie DDR2. Użytkownicy mogą mylić te standardy, sądząc, że niższe częstotliwości są kompatybilne również z DDR2, co jest błędne. W przypadku 800 MHz mamy do czynienia z wyższym standardem, który z kolei może być mylony z maksymalną częstotliwością działania, ale nie jest to minimalna wartość skutecznego taktowania dla DDR2. Taktowanie na poziomie 800 MHz jest osiągalne tylko przy zastosowaniu odpowiednich komponentów i nie jest to najniższa efektywna częstotliwość. Często błędne wyobrażenia o standardach pamięci mogą prowadzić do problemów z kompatybilnością w systemach komputerowych, gdyż niektóre płyty główne mogą nie obsługiwać starszych typów pamięci z niższymi częstotliwościami. Ważne jest, aby przy wyborze pamięci kierować się dokumentacją techniczną oraz wymaganiami sprzętowymi, co pozwoli uniknąć potencjalnych problemów z obiegiem danych oraz wydajnością systemu.

Pytanie 31

Do czego służy program CHKDSK?

A. odbudowy fizycznej struktury dysku
B. zmiany systemu plików
C. odbudowy logicznej struktury dysku
D. defragmentacji dysku
Program CHKDSK (Check Disk) jest narzędziem systemowym w systemach operacyjnych Windows, które jest używane do diagnostyki i naprawy problemów związanych z logiczną strukturą dysku. Jego głównym celem jest identyfikacja oraz naprawa błędów w systemie plików, co może obejmować problemy z alokacją przestrzeni dyskowej, uszkodzone sektory oraz inne nieprawidłowości, które mogą wpływać na integralność danych. Na przykład, jeżeli pliki są uszkodzone z powodu nieprawidłowego zamknięcia systemu lub awarii zasilania, CHKDSK może naprawić te problemy, przywracając prawidłowe wskazania w systemie plików. Ponadto, zgodnie z dobrymi praktykami w zakresie zarządzania danymi, regularne używanie CHKDSK jako części konserwacji systemu może znacząco zwiększyć długoterminową niezawodność dysków twardych. Narzędzie to wspiera standardy zarządzania systemami informatycznymi przez zapewnienie, że nośniki danych są w odpowiednim stanie do przechowywania i przetwarzania informacji.

Pytanie 32

Na płycie głównej z gniazdem pokazanym na fotografii możliwe jest zainstalowanie procesora

Ilustracja do pytania
A. Intel i9-7940X, s-2066 3.10GHz 19.25MB
B. Intel Xeon E3-1240V5, 3.9GHz, s-1151
C. AMD Sempron 2800+, 1600 MHz, s-754
D. AMD FX-6300, s-AM3+, 3.5GHz, 14MB
Gniazdo AM3+ na płycie głównej jest zgodne z procesorami AMD, takimi jak AMD FX-6300. Gniazdo AM3+ jest ulepszoną wersją gniazda AM3, oferującą lepsze wsparcie dla procesorów z większą liczbą rdzeni i wyższymi częstotliwościami taktowania. Procesory FX są znane ze swojej wielowątkowości, co czyni je atrakcyjnymi dla użytkowników, którzy korzystają z aplikacji wymagających dużej mocy obliczeniowej, takich jak renderowanie grafiki 3D czy edycja wideo. Instalacja zgodnego procesora w odpowiednim gnieździe jest kluczowa dla stabilności i wydajności systemu. Wybierając odpowiedni procesor, użytkownik może skorzystać z możliwości overclockingu, co jest popularne w przypadku serii FX. Zastosowanie procesora w odpowiednim gnieździe zgodnym z jego specyfikacją techniczną zapewnia optymalne działanie systemu oraz długowieczność komponentów, co jest zgodne z dobrymi praktykami branżowymi. Zapewnia to także łatwiejsze aktualizacje i modernizacje, co jest istotnym aspektem planowania zasobów IT.

Pytanie 33

Aby przekształcić serwer w kontroler domeny w systemach Windows Server, konieczne jest użycie komendy

A. regsvr32
B. winnt32
C. dcgpofix
D. dcpromo
Kiedy mówimy o promocji serwera do roli kontrolera domeny, warto zauważyć, że istnieje wiele komend systemowych, które mogą być mylące w tym kontekście. Na przykład, 'dcgpofix' jest narzędziem służącym do przywracania domyślnych obiektów polityki grupowej (Group Policy Objects) w Active Directory. Choć związane z zarządzaniem domeną, nie ma zastosowania podczas procesu promocji serwera do roli kontrolera domeny. Użytkownicy często mylą 'dcpromo' z innymi komendami, co może prowadzić do błędnej konfiguracji i problemów z zarządzaniem. 'regsvr32' jest narzędziem służącym do rejestrowania bibliotek DLL, co również nie ma żadnego związku z rolą kontrolera domeny. Można je wykorzystać w kontekście instalacji oprogramowania, ale nie w kontekście zarządzania domeną. Kolejnym mylnym podejściem jest 'winnt32', które służy do uruchamiania instalacji systemu Windows, ale nie ma zastosowania w kontekście promocji serwera do roli kontrolera. Użytkownicy często popełniają błąd, łącząc różne aspekty zarządzania siecią z promocją kontrolera domeny, co prowadzi do nieporozumień i błędnych decyzji. Ważne jest, by zrozumieć właściwe zastosowanie każdej komendy oraz ich kontekst, aby skutecznie zarządzać infrastrukturą IT.

Pytanie 34

Jakie oznaczenie potwierdza oszczędność energii urządzenia?

A. Energy TCO
B. Energy ISO
C. Energy STAR
D. Energy IEEE
Energy STAR to uznawany na całym świecie program, który identyfikuje i wspiera produkty, które spełniają określone standardy dotyczące efektywności energetycznej. Produkty oznaczone tym certyfikatem zużywają mniej energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Przykładami urządzeń, które mogą posiadać certyfikat Energy STAR, są lodówki, pralki, klimatyzatory oraz komputery. Program ten jest również korzystny dla producentów, ponieważ pozwala im wyróżnić swoje produkty na rynku, co może zwiększyć sprzedaż. Energy STAR jest zgodny z najlepszymi praktykami z zakresu zarządzania energią oraz standardami międzynarodowymi, co czyni go wiarygodnym wskaźnikiem dla konsumentów poszukujących energooszczędnych rozwiązań. Certyfikacja ta jest również ważnym elementem strategii zrównoważonego rozwoju, pomagając w redukcji emisji gazów cieplarnianych oraz promując zrównoważone wykorzystanie zasobów energetycznych.

Pytanie 35

Skaner, który został przedstawiony, należy podłączyć do komputera za pomocą złącza

Ilustracja do pytania
A. USB-B
B. Mini USB
C. USB-A
D. Micro USB
Złącze USB-A to standardowy port USB, który można znaleźć głównie w komputerach, zasilaczach i innych urządzeniach peryferyjnych jako port żeński, do którego podłączamy inne urządzenia za pomocą kabli zakończonych wtykiem USB-A. USB-B, z kolei, jest złączem używanym głównie w urządzeniach peryferyjnych takich jak drukarki i skanery, ale w większych, stacjonarnych wersjach, co czyni tę opcję nieodpowiednią dla przenośnych skanerów. Mini USB znajduje zastosowanie w kompaktowych urządzeniach elektronicznych, co jest zgodne z typem skanera wskazanego w pytaniu. Micro USB, choć bardziej nowoczesne i mniejsze niż Mini USB, nie jest odpowiednim wyborem, jeśli urządzenie zostało wyprodukowane w czasie, gdy Mini USB było standardem de facto dla małych urządzeń. Powszechnym błędem jest przypuszczenie, że wszystkie skanery są wyposażone w złącze USB-A lub Micro USB, ponieważ są one bardziej znane użytkownikom współczesnym. Jednak pominięcie specyfiki technicznej danego urządzenia może prowadzić do tego rodzaju błędnych wniosków. Właściwe zrozumienie standardów złączy i ich ewolucji jest kluczowe w podejmowaniu odpowiednich decyzji dotyczących kompatybilności urządzeń elektronicznych, zwłaszcza w kontekście sprzętu wykorzystywanego w specjalistycznych zadaniach zawodowych.

Pytanie 36

W jaki sposób oznaczona jest skrętka bez zewnętrznego ekranu, mająca każdą parę w osobnym ekranie folii?

A. F/UTP
B. U/FTP
C. F/STP
D. S/FTP
Odpowiedzi F/STP, S/FTP i F/UTP są niepoprawne, ponieważ różnią się one istotnie od właściwej definicji U/FTP. F/STP oznacza skrętkę z zewnętrznym ekranem, co nie jest zgodne z warunkami pytania. W przypadku F/STP, ekran obejmuje cały kabel, co może być korzystne w niektórych aplikacjach, ale w sytuacjach, gdzie każda para wymaga osobnej ochrony, nie sprawdza się to. S/FTP, z kolei, stosuje zarówno ekran na przewody parowe, jak i na cały kabel, co zwiększa ochronę, ale nie odpowiada na pytanie o brak zewnętrznego ekranu, co czyni tę odpowiedź niewłaściwą. F/UTP oznacza brak ekranowania całego kabla, ale z ekranowaniem par przewodów, co również nie spełnia kryteriów opisanych w pytaniu. Często błędnie myśli się, że większa ilość ekranowania zawsze przekłada się na lepszą jakość sygnału, co nie jest prawdą w każdym przypadku. Właściwy dobór typu skrętki powinien być uzależniony od specyficznych warunków zastosowania oraz środowiska, w którym będzie działać sieć. Użycie niewłaściwego standardu może prowadzić do problemów z zakłóceniami oraz zmniejszenia efektywności transmisji danych.

Pytanie 37

Wskaź, które zdanie dotyczące zapory sieciowej jest nieprawdziwe?

A. Stanowi składnik systemu operacyjnego Windows
B. Jest częścią oprogramowania wielu routerów
C. Jest narzędziem ochronnym sieci przed atakami
D. Jest zainstalowana na każdym przełączniku
Stwierdzenie, że zapora sieciowa jest zainstalowana na każdym przełączniku, jest fałszywe, ponieważ nie wszystkie przełączniki posiadają funkcjonalność zapory. Zaporą sieciową nazywamy system zabezpieczeń, który kontroluje ruch sieciowy na podstawie ustalonych reguł. W przypadku większości przełączników, ich podstawową rolą jest przekazywanie pakietów danych w sieci lokalnej, a nie filtrowanie ruchu. Zabezpieczenie sieciowe często jest realizowane na poziomie routerów lub dedykowanych urządzeń zaporowych. Praktyczne zastosowanie zapór sieciowych obejmuje ochronę przed atakami z zewnątrz, co jest kluczowe w kontekście bezpieczeństwa informacji oraz zgodności z regulacjami takimi jak RODO czy PCI DSS. Dlatego zrozumienie, gdzie i jak umieszczać zapory, jest kluczowe dla budowy bezpiecznej infrastruktury IT.

Pytanie 38

Jakiego typu macierz RAID nie zapewnia odporności na awarie żadnego z dysków tworzących jej strukturę?

A. RAID 2
B. RAID 6
C. RAID 4
D. RAID 0
RAID 4 to macierz, która wdraża technologię parity, co pozwala na zapewnienie pewnego poziomu ochrony danych. W przypadku awarii jednego z dysków, dane mogą być odtworzone dzięki przechowywanej parze, co czyni ją odporną na pojedyncze awarie. Z kolei RAID 6 pozwala na jednoczesne wystąpienie dwóch awarii dysków dzięki zastosowaniu podwójnej parzystości, co sprawia, że jest bardziej niezawodny w porównaniu do RAID 4. RAID 2 z kolei, choć rzadko stosowany w praktyce, wykorzystuje technologię dysków z kodowaniem Hamming w celu korekcji błędów, co również zwiększa poziom ochrony danych. Zrozumienie różnic między tymi konfiguracjami jest kluczowe w kontekście projektowania systemów przechowywania danych. Użytkownicy często mylnie przypisują RAID 0 cechy innych konfiguracji, co prowadzi do błędnych przekonań o jej bezpieczeństwie. RAID 0, pomimo wysokiej wydajności, nie oferuje żadnej redundancji, co czyni ją nieodpowiednią do zastosowań, gdzie utrata danych może być katastrofalna. Kluczowym błędem jest nieodróżnianie wydajności od bezpieczeństwa, co jest fundamentem w wyborze odpowiedniej konfiguracji RAID w zależności od potrzeb organizacji.

Pytanie 39

Która część stanowi treść dokumentacji powykonawczej?

A. Wstępny kosztorys ofertowy.
B. Kalkulacja kosztów na podstawie katalogu nakładów rzeczowych KNR.
C. Wyniki testów sieci.
D. Analiza biznesowa potrzeb zamawiającego.
Wyniki testów sieci stanowią kluczowy element dokumentacji powykonawczej, ponieważ dostarczają obiektywnych danych na temat funkcjonowania zrealizowanego projektu. Dokumentacja ta ma na celu potwierdzenie, że wszystkie wymagania zamawiającego zostały zrealizowane oraz że system działa zgodnie z założeniami projektowymi. Przykładem mogą być wyniki testów wydajnościowych, które pokazują, jak system radzi sobie z obciążeniem, oraz testy bezpieczeństwa, które weryfikują, czy nie występują luki w zabezpieczeniach. Tego typu wyniki są istotne nie tylko dla samego projektu, ale również dla zapewnienia zgodności z normami branżowymi, takimi jak ISO/IEC 27001, które wskazują na konieczność przeprowadzania takich testów w celu ochrony danych. Dobrze przygotowana dokumentacja powykonawcza, w tym wyniki testów, pozwala również na łatwiejsze utrzymanie i rozwój systemu w przyszłości, ułatwiając pracę zespołom technicznym i audytorom.

Pytanie 40

Mysz komputerowa z interfejsem bluetooth pracującym w klasie 2 ma teoretyczny zasięg do

A. 100 m
B. 2 m
C. 10 m
D. 1 m
Mysz komputerowa z interfejsem Bluetooth działającym w klasie 2 ma teoretyczny zasięg działania do 10 metrów. Klasa 2 Bluetooth jest jednym z najczęściej stosowanych standardów w urządzeniach przenośnych, co czyni je idealnym rozwiązaniem dla myszek oraz innych akcesoriów. W praktyce oznacza to, że użytkownik może korzystać z myszki w promieniu do 10 metrów od nadajnika, co daje dużą swobodę ruchu. Tego rodzaju zasięg jest wystarczający w typowych warunkach biurowych czy domowych, gdzie urządzenia Bluetooth mogą być używane w odległości od laptopa czy komputera stacjonarnego. Ponadto, Bluetooth jako technologia jest zaprojektowana z myślą o niskim zużyciu energii, co przekłada się na długotrwałe działanie akumulatorów w urządzeniach bezprzewodowych. Warto również zauważyć, że zasięg może być ograniczany przez przeszkody, takie jak ściany czy meble, co jest typowe dla środowisk z wieloma elementami blokującymi sygnał. Dobrą praktyką jest regularne sprawdzanie, czy urządzenie działa w optymalnym zakresie, aby uniknąć problemów z łącznością.