Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 18 maja 2025 08:16
  • Data zakończenia: 18 maja 2025 08:26

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
B. O przerwie w uzwojeniu stojana
C. O uszkodzeniu przełącznika kierunku prądu w wirniku
D. O zwarciu w uzwojeniach wirnika
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 2

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Okresowe, określone w planie przeglądów
B. Związane z ochroną zdrowia i życia ludzi
C. Związane z ochroną urządzeń przed zniszczeniem
D. Codzienne, wskazane w instrukcji eksploatacji
Odpowiedź wskazująca na konieczność wydania polecenia przy okresowych przeglądach instalacji elektrycznych do 1 kV jest zgodna z obowiązującymi standardami oraz regulacjami prawnymi w zakresie bezpieczeństwa eksploatacji urządzeń elektrycznych. Okresowe przeglądy, wpisane w planie przeglądów, mają na celu weryfikację stanu technicznego instalacji oraz wykrywanie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Wydanie polecenia w tym kontekście jest niezbędne, aby formalnie zlecić te działania odpowiedniemu personelowi, który ma kompetencje oraz uprawnienia do ich przeprowadzenia. Przykładem zastosowania może być sytuacja, w której po przeprowadzeniu przeglądu instalacji wykryto nieprawidłowości, co wymaga szybkiego podjęcia działań naprawczych w celu uniknięcia awarii. Warto również podkreślić, że systematyczne przeglądy są rekomendowane przez Polskie Normy oraz przepisy prawa budowlanego, co potwierdza ich istotność w kontekście bezpieczeństwa elektrycznego.

Pytanie 3

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Dwukrotnie mniejszą
B. Dwukrotnie większą
C. Trzykrotnie mniejszą
D. Trzykrotnie większą
Wybór odpowiedzi, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie większą mocą przy połączeniu uzwojeń w gwiazdę, jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników indukcyjnych. Gdy uzwojenia silnika są połączone w gwiazdę, napięcie na każdym uzwojeniu jest niższe, co automatycznie obniża moc dostarczaną przez silnik. Mocy silnika nie można zwiększyć ponad jego znamionową moc przy połączeniu w gwiazdę, ponieważ prowadziłoby to do przeciążeń i potencjalnych uszkodzeń uzwojeń oraz innych komponentów silnika. Takie podejście jest w sprzeczności z praktykami projektowania systemów napędowych, które zakładają, że maksymalne obciążenie silnika powinno być dostosowane do jego parametrów znamionowych. Wybór mocy większej niż znamionowa, niezależnie od sposobu podłączenia, naraża silnik na awarie, co może prowadzić do kosztownych przestojów w produkcji. Oprócz tego, typowe błędy myślowe związane z tym zagadnieniem to brak uwzględnienia wpływu napięcia i prądu na moc silnika oraz niedostateczne zrozumienie mechanizmu rozruchu silników indukcyjnych. Aby poprawnie podejść do tematu, należy zrozumieć zasady działania uzwojeń oraz efekty rozruchu w różnych konfiguracjach, co jest kluczowe dla efektywnego i bezpiecznego użytkowania silników w zastosowaniach przemysłowych.

Pytanie 4

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Wyłączników różnicowoprądowych.
B. Wkładek bezpiecznikowych.
C. Elementów łącznikowych.
D. Opraw oświetleniowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 5

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. LPS
B. SPZ
C. LPL
D. SPD
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 6

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Nierównomierna szczelina powietrzna w silniku
B. Przerwa w jednym z fazowych przewodów zasilających
C. Niewłaściwe wyważenie wirnika silnika
D. Wyższa częstotliwość napięcia zasilającego
Podwyższona częstotliwość napięcia zasilania może wydawać się na pierwszy rzut oka logiczną przyczyną zmniejszenia prędkości obrotowej silnika indukcyjnego, lecz w rzeczywistości efekt ten jest odwrotny. Wzrost częstotliwości napięcia zasilania prowadzi do zwiększenia prędkości obrotowej silnika, zgodnie z zasadą, że prędkość synchronizacyjna silników indukcyjnych rośnie proporcjonalnie do częstotliwości zasilającego napięcia. Niezrozumienie tej zasady może prowadzić do błędnych wniosków i niedopasowanych ustawień w systemach zasilania, co z kolei może doprowadzić do uszkodzenia silników. Nierównomierna szczelina powietrzna w silniku, choć istotna dla wydajności, nie jest bezpośrednią przyczyną zmniejszenia prędkości obrotowej. Zmiany w szczelinach mogą wprawdzie wpłynąć na straty mechaniczne, ale nie są one najczęstszym czynnikiem powodującym obniżenie prędkości. Z kolei złe wyważenie wirnika może prowadzić do wibracji i uszkodzeń łożysk, lecz nie wpływa na prędkość obrotową w tak bezpośredni sposób jak przerwa w zasilaniu. Zrozumienie tych koncepcji jest kluczowe w kontekście diagnostyki i konserwacji silników, a także w projektowaniu układów zasilania, gdzie należy brać pod uwagę zarówno aspekty elektryczne, jak i mechaniczne.

Pytanie 7

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Zwiększenie mocy znamionowej urządzeń elektrycznych
B. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
C. Zabezpieczenie ludzi przed porażeniem elektrycznym
D. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 8

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA

A. P302 25-10-AC
B. P202 25-30-AC
C. P304 40-100-AC
D. P304 40-30-AC
Wyłącznik P202 25-30-AC jest poprawny, ponieważ jego prąd zadziałania wynosi 25 mA, co mieści się w przedziale I_A = (0,5÷1,00) I_ΔN dla tego urządzenia. Obliczając ten zakres, przyjmujemy, że nominalny prąd różnicowy I_ΔN wynosi 30 mA, co daje zakres zadziałania od 15 mA do 30 mA. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, chroniącymi przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi upływem prądu. Regularne sprawdzanie ich działania, zgodne z normami takimi jak PN-EN 61008, jest niezbędne w każdej instalacji elektrycznej. Właściwy dobór wyłączników i ich odpowiednie ustawienia mają kluczowe znaczenie dla bezpieczeństwa użytkowników i niezawodności systemu. Zastosowanie wyłącznika P202 25-30-AC w praktyce pozwala na efektywne zabezpieczenie obwodów w różnych aplikacjach, w tym w budynkach mieszkalnych, biurowych oraz przemysłowych.

Pytanie 9

Aby zidentyfikować miejsce o zwiększonej temperaturze obudów silników w wersji przeciwwybuchowej, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu pomiar temperatury nie powinien być wykonywany?

A. Na tarczy łożyskowej, od strony napędowej blisko pokrywy łożyskowej
B. Na końcu obudowy od strony napędowej
C. W centrum obudowy w rejonie skrzynki zaciskowej
D. W okolicy pokrywy wentylatora
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Zlokalizowanie odpowiedniego miejsca do pomiaru ma ogromne znaczenie, a obszar w pobliżu pokrywy wentylatora jest jednym z tych miejsc, które należy unikać. Wentylatory mają tendencję do generowania dodatkowego ciepła w wyniku tarcia oraz niewłaściwego przepływu powietrza, co może prowadzić do błędnych odczytów temperatury. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura obudowy silnika jest bardziej stabilna i reprezentatywna dla jego ogólnej pracy. Przykładem dobrych praktyk jest pomiar w pobliżu skrzynki zaciskowej, gdzie zazwyczaj nie występują dodatkowe czynniki wpływające na wyniki. Stosowanie się do tych zasad jest zgodne z normami takimi jak IEC 60079, które regulują kwestie bezpieczeństwa w obszarach zagrożonych wybuchem. Wspierają one zrozumienie, jak ważne jest prawidłowe lokalizowanie miejsc do pomiarów, aby uniknąć fałszywych alarmów i zapewnić bezpieczeństwo operacji.

Pytanie 10

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Piezorezystor
B. Pozystor
C. Tensometr
D. Halotron
Tensometr to przetwornik, który jest idealnym narzędziem do pomiaru momentu obrotowego, szczególnie w kontekście wałów napędowych silników elektrycznych. Działa na zasadzie pomiaru deformacji, które są wynikiem przyłożonego momentu obrotowego. Kiedy wał napędowy zostaje poddany obciążeniu, jego deformacja jest proporcjonalna do przyłożonego momentu, co pozwala na dokładne obliczenie tego momentu przy użyciu tensometrów. Przykłady zastosowania tensometrów obejmują przemysł motoryzacyjny, gdzie są wykorzystywane do testowania komponentów silników, a także w maszynach przemysłowych do monitorowania stanu technicznego wałów oraz detekcji przeciążeń. W branży stosuje się także standardy, takie jak ISO 376, które regulują metody kalibracji i pomiaru tensometrycznego, zapewniając wysoką precyzję i niezawodność wyników. Zastosowanie tensometrów w praktyce nie tylko poprawia jakość pomiarów, ale również zwiększa bezpieczeństwo operacyjne, dzięki możliwości wczesnego wykrywania problemów w systemach napędowych.

Pytanie 11

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-C
B. IT
C. TN-S
D. TT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 12

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Odłącznik
B. Przekaźnik termiczny
C. Stycznik
D. Wyłącznik nadprądowy
Wyłącznik nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, którego głównym zadaniem jest ochrona przewodów przed skutkami zwarć oraz przeciążeń. Działa na zasadzie automatycznego przerwania obwodu, gdy prąd przekroczy określoną wartość nominalną. Dzięki temu minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, wyłączniki nadprądowe są stosowane w różnych typach instalacji, od domowych po przemysłowe. Przykładem mogą być obwody zasilające urządzenia, które mogą generować nagłe skoki prądu, takie jak silniki elektryczne. Zgodnie z normą PN-EN 60898-1, wyłączniki nadprądowe powinny być dobierane w zależności od charakterystyki obciążenia oraz rodzaju zabezpieczanego obwodu, co zapewnia ich skuteczność i niezawodność w działaniu. Warto również wspomnieć, że stosowanie wyłączników nadprądowych jest częścią dobrych praktyk w zakresie projektowania instalacji elektrycznych, co znacząco przyczynia się do bezpieczeństwa użytkowania.

Pytanie 13

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 50 V AC
B. 230 V AC
C. 110 V DC
D. 12 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 14

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP22
B. IP11
C. IP44
D. IP32
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 15

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Zbyt słabym dociskiem szczotek do pierścieni
B. Brakiem symetrii napięć zasilających.
C. Zbyt wysoką temperaturą otoczenia.
D. Nieprawidłową kolejnością faz.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 16

Który przewód powinien być zastosowany do połączenia z siecią 230 V transformatora znajdującego się w metalowej obudowie centralki alarmowej?

A. OMY 3×0,75 mm2
B. YTDY 4×0,5 mm2
C. OMY 2×0,75 mm2
D. YTDY 2×0,5 mm2
Odpowiedź OMY 3×0,75 mm2 jest poprawna, ponieważ przewód ten charakteryzuje się odpowiednią konstrukcją i parametrami technicznymi do wykorzystania w instalacjach zasilających urządzenia wymagające podłączenia do sieci 230 V. Przewód OMY jest przewodem w gumie, co zapewnia mu elastyczność i odporność na różne czynniki atmosferyczne oraz mechaniczne, co jest kluczowe w kontekście instalacji w metalowej obudowie centralki alarmowej. Wybór przewodu o przekroju 0,75 mm2 jest uzasadniony dla aplikacji o średnim poborze mocy, co jest typowe w systemach alarmowych. Dodatkowo, OMY 3×0,75 mm2 zawiera trzy żyły, co umożliwia nie tylko zasilanie, ale także podłączenie dodatkowych funkcji, takich jak sygnalizacja. Stosowanie przewodów zgodnych z normami PN-EN 60228 oraz PN-EN 50525 jest zgodne z zaleceniami dobrych praktyk elektrycznych, co zapewnia bezpieczeństwo i niezawodność w eksploatacji.

Pytanie 17

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT/NH DC
C. WT/NHaM
D. WT-2gTr
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 18

Wybierz najmniejszy przekrój głównego przewodu wyrównawczego, który jest wykonany z miedzi, mając na uwadze, że maksymalny wymagany przekrój przewodu ochronnego w całej instalacji wynosi S = 16 mm2.

A. 10 mm2
B. 6 mm2
C. 16 mm2
D. 4 mm2
Wybór przekroju przewodu wyrównawczego głównego mniejszego niż 10 mm², jak na przykład 4 mm², 6 mm² czy 16 mm², prowadzi do poważnych konsekwencji w zakresie bezpieczeństwa i ochrony instalacji elektrycznych. Przewód o przekroju 4 mm² jest niewystarczający, aby sprostać wymaganiom zabezpieczeń w sytuacji zwarcia. W przypadku awarii prąd zwarciowy może być znacznie większy niż maksymalne wartości, które może przewodzić taki przewód, co prowadzi do jego przegrzania i potencjalnego uszkodzenia, a w najgorszym przypadku do pożaru. Odpowiedź 6 mm² również jest zbyt mała, co naraża instalację na ryzyko awarii oraz może skutkować nieefektywnym działaniem systemów ochrony, takich jak wyłączniki różnicowoprądowe. Z kolei wybór 16 mm² jako minimalnego przekroju, mimo że spełnia wymagania, nie jest optymalny z punktu widzenia kosztów i elastyczności instalacji, ponieważ przewody o większym przekroju są droższe oraz mniej elastyczne, co może powodować problemy podczas montażu w trudnych warunkach. Aby dobierać odpowiednie przekroje przewodów, należy kierować się nie tylko maksymalnymi wartościami prądów, ale również normami i praktykami branżowymi, które jasno wskazują, że przewody wyrównawcze powinny być stosowane z rozwagą, uwzględniając ich funkcję w systemie ochrony przeciwporażeniowej oraz specyfikę konkretnej instalacji.

Pytanie 19

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 20

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Wybory i konfiguracji urządzeń zabezpieczających
B. Danych technicznych instalacji
C. Terminów dotyczących prób oraz kontrolnych pomiarów
D. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 21

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. wzrostu reaktancji cewki
B. zmniejszenia natężenia prądu płynącego przez cewkę
C. wzrostu rezystancji cewki
D. spadku indukcyjności cewki
Wybór odpowiedzi związanej ze zwiększeniem rezystancji cewki może wydawać się logiczny w kontekście zwarcia, jednak nie jest to właściwe podejście do analizy tego zjawiska. W przypadku zwarcia międzyzwojowego, rzeczywisty przepływ prądu przez cewkę może obniżyć jej indukcyjność, ale niekoniecznie prowadzi to do wzrostu rezystancji. W rzeczywistości, w momencie zwarcia, można zaobserwować zmniejszenie impedancji, co skutkuje większym natężeniem prądu, a nie jego spadkiem. Ponadto, zmniejszenie prądu pobieranego przez cewkę jest z kolei związane z jej działaniem w obwodzie, a nie bezpośrednio z zwarciem. Warto zauważyć, że w niektórych warunkach zwarcie może prowadzić do zwiększenia prądu, co jest sprzeczne z koncepcją jego zmniejszenia. Zwiększenie reaktancji cewki również nie jest odpowiednie, ponieważ w przypadku zwarcia reaktancja (zależna od indukcyjności) maleje. Typowe błędy myślowe polegają na myleniu pojęć związanych z rezystancją i reaktancją, co prowadzi do niepoprawnych wniosków o wpływie zwarcia na parametry cewki. W praktyce, kluczowym jest zrozumienie, że zwarcie prowadzi do zmiany w strukturze magnetycznej i elektrycznej cewki, co wyraźnie wpływa na jej wydajność i parametry operacyjne.

Pytanie 22

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. cewka stycznika jest uszkodzona
B. przewód fazowy jest odłączony
C. cewka stycznika działa prawidłowo
D. przewód neutralny jest odłączony
Rozważając inne odpowiedzi, można zauważyć, że stwierdzenie o odłączeniu przewodu fazowego jest mylne, ponieważ w przypadku odłączonego przewodu nie można by było zmierzyć rezystancji cewki. Przy braku połączenia zasilania nie byłoby żadnych wartości pomiarowych. Z drugiej strony, twierdzenie o sprawności cewki stycznika również jest fałszywe, ponieważ pomiar rezystancji 0 Ω wskazuje na zwarcie, co jest jednoznacznie oznaką uszkodzenia, a nie sprawności. Z kolei koncepcja odłączenia przewodu neutralnego również nie może być uznana za prawidłową, ponieważ niezależnie od stanu przewodu neutralnego, cewka stycznika, będąc elementem elektromagnetycznym, wymaga zarówno przewodu fazowego, jak i neutralnego do prawidłowego działania. W związku z tym, wszelkie błędne wnioski prowadzą do nieporozumień dotyczących diagnozowania problemów z cewkami styczników. Kluczowe jest zrozumienie, że pomiar rezystancji jest podstawowym narzędziem w diagnostyce, a jego interpretacja wymaga wiedzy o działaniu układów elektrycznych. Umiejętność skutecznej diagnostyki pozwala uniknąć kosztownych przestojów i niebezpieczeństw związanych z niewłaściwym działaniem instalacji.

Pytanie 23

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Grzałki oraz spirale grzejne
B. Szczotkotrzymacze oraz szczotki węglowe
C. Termostaty i czujniki temperatury
D. Przekładnie i skrzynki przekładniowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 24

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 25 mm2
B. 20 mm2
C. 50 mm2
D. 35 mm2
Wybór innego przekroju przewodu PE niż 25 mm2 może wynikać z nieporozumienia dotyczącego zasad ochrony przeciwporażeniowej. Przekroje 35 mm2, 20 mm2 oraz 50 mm2 są nieadekwatne dla tego przypadku. Przekrój 35 mm2 jest zbyt duży i niezgodny z wymaganiami normatywnymi, które określają minimalne wartości. W przypadku przewodu 20 mm2, jest on poniżej wymaganego minimum, co stwarza ryzyko niedostatecznego zabezpieczenia w razie awarii. Odpowiedź 50 mm2 natomiast, mimo że technicznie spełnia normy, jest zbyt wysoka, co prowadzi do zbędnych kosztów oraz nieoptymalnego doboru materiałów. W praktyce, zbyt duży przekrój może skutkować trudnościami w montażu i nieefektywnym wykorzystaniu przestrzeni instalacyjnej. Ponadto, w przypadku przewodów ochronnych, ich główną funkcją jest przewodzenie prądu zwarciowego do ziemi, co minimalizuje ryzyko porażenia prądem. Dlatego normy jasno definiują, że odpowiedni przekrój powinien być proporcjonalny do przekroju przewodów zasilających, a w przypadku aluminium wynosić 25 mm2. Niezrozumienie zasadności tych wartości może prowadzić do zastosowania niewłaściwych przekrojów, co skutkuje obniżeniem poziomu bezpieczeństwa w instalacji elektrycznej.

Pytanie 25

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. zadziałanie wyłącznika różnicowoprądowego
B. wzrost częstotliwości napięcia sieci
C. zadziałanie zabezpieczenia termicznego
D. zanik napięcia w jednej fazie
Zanik napięcia w jednej fazie jest najczęstszą przyczyną nagłego zmniejszenia prędkości obrotowej trójfazowego silnika indukcyjnego. W przypadku, gdy jedna z faz silnika przestaje dostarczać energię, silnik działa w trybie dwu-fazowym. W takiej sytuacji moment obrotowy silnika znacząco spada, co prowadzi do zmniejszenia prędkości obrotowej. Dodatkowo, silnik może emitować zwiększony hałas, ponieważ nieprawidłowa praca silnika może generować wibracje i dodatkowe obciążenia. W praktyce, w celu zabezpieczenia silnika przed takimi sytuacjami, stosuje się różne systemy monitorowania i zabezpieczeń, takie jak automatyczne wyłączniki, które detekują zanik napięcia i odłączają silnik od zasilania, co zapewnia jego bezpieczeństwo. Zgodnie z normami IEC dotyczących silników elektrycznych, regularne sprawdzanie układów zasilających oraz instalacja odpowiednich zabezpieczeń jest kluczowe dla zapobiegania uszkodzeniom silnika i jego awariom. Ponadto, należy prowadzić systematyczną konserwację oraz inspekcje, aby zapewnić niezawodność i efektywność pracy urządzeń elektrycznych.

Pytanie 26

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. Około 1660 Ω
B. 4 000 Ω
C. 2 000 Ω
D. Około 830 Ω
Wybór błędnej odpowiedzi, takiej jak 4 000 Ω, 830 Ω lub 2 000 Ω, wynika z nieporozumienia dotyczącego zasad obliczania rezystancji uziomu w kontekście prądów różnicowych i napięcia dotykowego. Rezystancja uziomu jest kluczowym parametrem w systemach ochrony przed porażeniem elektrycznym. Zrozumienie, że maksymalna rezystancja uziomu jest powiązana z prądem różnicowym oraz napięciem, jest fundamentem dla obliczeń inżynieryjnych. Odpowiedzi takie jak 4 000 Ω są ogromnie niebezpieczne, ponieważ sugerują, że można zaakceptować znacznie wyższe wartości rezystancji, co prowadzi do niewystarczającej ochrony. Gdy rezystancja jest zbyt duża, w przypadku wystąpienia prądu różnicowego, nie ma wystarczającego potencjału do wyzwolenia wyłącznika różnicowoprądowego, co stwarza poważne ryzyko porażenia. Z kolei odpowiedzi 830 Ω oraz 2 000 Ω mogą wynikać z błędów obliczeniowych lub niewłaściwego zrozumienia napięcia dotykowego oraz jego wpływu na bezpieczeństwo. Przykładowo, zastosowanie rezystancji uziomu o wartości 830 Ω w sytuacji, gdzie maksymalne napięcie dotykowe wynosi 50 V, sprawia, że nie ma wystarczającego marginesu bezpieczeństwa dla użytkowników. W przypadku zaprojektowania systemu uziemiającego, normy takie jak PN-EN 61140 oraz PN-IEC 60364 powinny być podstawą wszelkich wyliczeń oraz implementacji, aby zapewnić skuteczność oraz bezpieczeństwo instalacji elektrycznych.

Pytanie 27

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie zmniejszy się
B. Dwukrotnie wzrośnie
C. Czterokrotnie zmniejszy się
D. Czterokrotnie wzrośnie
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 28

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 1 A
B. 3 A
C. 4 A
D. 2 A
Wybór niewłaściwego zakresu pomiarowego amperomierza może wynikać z kilku błędnych założeń. Przede wszystkim, niektóre odpowiedzi mogą sugerować, że natężenie prądu będzie znacznie niższe niż w rzeczywistości, co jest wynikiem nieprawidłowego zrozumienia wzorów związanych z mocą oraz współczynnikiem mocy. Na przykład, wybierając zakres 1 A lub 2 A, można zakładać, że wyniki pomiarów będą dostateczne, jednak w praktyce taki amperomierz mógłby ulec uszkodzeniu w przypadku przekroczenia jego maksymalnych wartości. Należy też pamiętać, że obliczana moc bierna, związana z parametrem cosα, wpływa na całkowity prąd pobierany przez silnik. Przy obliczeniu prądu, istotne jest uwzględnienie rzeczywistej mocy czynnej oraz sprawności silnika, co może prowadzić do błędnych wniosków, jeśli te wartości nie zostaną prawidłowo zaimplementowane w obliczeniach. W każdym przypadku przed dokonaniem wyboru sprzętu pomiarowego, warto zapoznać się z wytycznymi dotyczącymi doboru przyrządów, które zalecają wybór urządzeń z odpowiednim marginesem bezpieczeństwa. Aby uzyskać pełen obraz sytuacji, warto również zwrócić uwagę na rzeczywiste warunki pracy silnika oraz charakterystykę obciążenia, które mogą dodatkowo wpływać na wartość prądu. Dobre praktyki wymagają, aby przy doborze amperomierza brać pod uwagę rzeczywiste zastosowanie oraz możliwe zmiany w obciążeniu, co w przypadku silników elektrycznych bywa dość istotne.

Pytanie 29

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zwiększenie prędkości obrotowej
B. zmianę kierunku obrotu
C. zatrzymanie wirnika
D. zmniejszenie prędkości obrotowej
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 30

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 100 mA
B. 200 mA
C. 400 mA
D. 500 mA
Zauważ, że wartości takie jak 500 mA, 100 mA albo 400 mA mogą wydawać się w porządku, ale to nie jest to, co potrzebujemy do testowania ciągłości przewodów ochronnych. Na przykład 500 mA to za dużo, bo może uszkodzić elementy instalacji i stworzyć ryzyko dla osób przeprowadzających pomiary. Z kolei 100 mA może być za mało, żeby wychwycić problemy w dłuższych przewodach. Czasami ludzie myślą, że im wyższy prąd, tym lepsze wyniki, a to nie jest tak proste, jeśli chodzi o pomiary ciągłości. Ważne jest, żeby zrozumieć, że chodzi o wykrycie przerw, a nie testowanie wytrzymałości przewodu na wysokie prądy. Musisz dobierać natężenie zgodnie z normami, a w przypadku pomiarów ciągłości przewodów ochronnych, 200 mA to optymalna wartość.

Pytanie 31

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. odłączyć rezystory rozruchowe
B. sprawdzić ciągłość obwodu wirnika
C. zwierać uzwojenie stojana
D. wymienić szczotki
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 32

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 3 lata
B. 4 lata
C. 1 rok
D. 2 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 33

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Pirometru
C. Prądnicy tachometrycznej.
D. Tensometru mostkowego.
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 34

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. nadmierne wibracje
B. znamionowe zużycie prądu
C. spadek rezystancji izolacji uzwojeń do 5 MΩ
D. spadek napięcia zasilania poniżej 3 %
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 35

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Przepięcia
B. Obecność harmonicznych
C. Czystość powietrza
D. Wahania napięcia
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 36

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 100 V
B. 500 V
C. 230 V
D. 750 V
Podczas gdy napięcie testowe 100 V może wydawać się bezpieczną opcją, jest niewystarczające do wykrycia drobnych uszkodzeń izolacji, które mogą prowadzić do poważniejszych problemów w przyszłości. Napięcie to jest stosowane do pomiarów w obwodach o niższym napięciu znamionowym, ale nie jest zgodne z wymaganiami dla obwodów 230 V. Z kolei napięcie testowe 230 V, choć odpowiada napięciu znamionowemu badanego obwodu, nie spełnia norm dotyczących pomiarów rezystancji izolacji. Testowanie przy napięciu znamionowym nie uwzględnia potencjalnych warunków przeciążeniowych, które mogą wystąpić w eksploatacji. Zastosowanie napięcia 750 V, choć technicznie możliwe, może być niebezpieczne dla izolacji i nie jest standardem w pomiarach dla obwodów 230 V. Tak wysokie napięcie może prowadzić do niepotrzebnych uszkodzeń, a testowanie każdej instalacji przy takim napięciu nie jest praktykowane ze względu na ryzyko i brak zgodności z normami. Dlatego najczęściej stosowane jest 500 V, jako kompromis między bezpieczeństwem a skutecznością diagnostyki.

Pytanie 37

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. III
B. I
C. 0
D. II
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 38

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518

A. B.
B. D.
C. C.
D. A.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 39

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. odłącznika
B. stycznika
C. wyłącznika
D. przekaźnika
Wyłącznik, stycznik i przekaźnik to urządzenia, które pełnią różne funkcje w obwodach elektrycznych, ale nie są odpowiednie do zapewnienia widocznej przerwy. Wyłącznik to urządzenie, które może być używane do włączania i wyłączania obwodu, lecz nie gwarantuje fizycznej, wizualnej separacji od źródła zasilania. Z kolei stycznik, często stosowany w automatyce, służy do zdalnego włączania i wyłączania obwodów, ale również nie zapewnia widoczności przerwy, co jest kluczowe w kontekście bezpieczeństwa podczas prac serwisowych. Przekaźnik działa na zasadzie przekazywania sygnałów i kontrolowania innych obwodów, jednak nie jest to urządzenie, które można zastosować jako widoczne odłączenie zasilania. Powszechny błąd w myśleniu polega na tym, że niektóre osoby mylą te urządzenia, zakładając, że każde z nich może pełnić rolę odłącznika. W rzeczywistości odpowiednie urządzenie musi nie tylko wyłączyć obwód, ale także wizualnie potwierdzić tę operację, co ma kluczowe znaczenie w kontekście norm bezpieczeństwa, takich jak PN-EN 60204-1. Dlatego, aby zapewnić bezpieczeństwo, konieczne jest stosowanie odłączników w odpowiednich zastosowaniach.

Pytanie 40

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Separacja elektryczna
C. Obwody SELV
D. Obwody PELV
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.