Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 21 maja 2025 10:05
  • Data zakończenia: 21 maja 2025 10:15

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki adres IP został przypisany do hosta na interfejsie sieciowym eth0?

Ilustracja do pytania
A. 00:A0:c9:89:02:F8
B. 128.171.104.255
C. 255.255.255.0
D. 128.171.104.26
Adres IP 128.171.104.26 jest właściwie skonfigurowany na karcie sieciowej eth0, co można zweryfikować poprzez polecenie ifconfig w systemie Linux. Adresy IP są podstawowymi elementami identyfikującymi urządzenia w sieci i każde urządzenie musi mieć unikalny adres IP w danej podsieci. W tym przypadku, adres 128.171.104.26 jest adresem klasy B, co oznacza, że jego zakres to od 128.0.0.0 do 191.255.255.255. Adresy klasy B mają maskę podsieci domyślną 255.255.0.0, ale tutaj widzimy niestandardową maskę 255.255.255.0, co oznacza, że używana jest podsieć o mniejszych rozmiarach. W praktyce, takie adresowanie może być użyte do organizacji sieci firmowych, gdzie większe sieci są dzielone na mniejsze segmenty w celu lepszego zarządzania ruchem. Zasady dobrych praktyk zalecają, aby zawsze używać poprawnych adresów IP i masek podsieci, aby uniknąć konfliktów adresów i zapewnić prawidłowe przekazywanie danych w sieci. Zrozumienie tych podstawowych koncepcji jest kluczowe dla każdego administratora sieci.

Pytanie 2

Układy sekwencyjne stworzone z grupy przerzutników, zazwyczaj synchronicznych typu D, wykorzystywane do magazynowania danych, to

A. rejestry
B. dekodery
C. kodery
D. bramki
Bramki logiczne, kodery i dekodery są podstawowymi elementami cyfrowych układów logicznych, jednak nie są odpowiednie do przechowywania danych jak rejestry. Bramki, na przykład, to podstawowe elementy, które realizują funkcje logiczne, takie jak AND, OR, NOT, ale same w sobie nie mają zdolności do pamiętania stanu. Ich zadaniem jest jedynie przetwarzanie sygnałów wejściowych i generowanie sygnałów wyjściowych w czasie rzeczywistym. W odniesieniu do kodów, kodery są używane do konwertowania sygnałów wejściowych na bardziej skompaktowane reprezentacje binarne, co jest przydatne w procesach kompresji czy komunikacji, ale nie są one w stanie przechowywać danych na dłużej. Z kolei dekodery wykonują odwrotną operację, przekształcając sygnały binarne z powrotem na formę łatwiejszą do interpretacji, ale również nie służą do przechowywania danych. W praktyce, pomylenie tych elementów z rejestrami może prowadzić do błędnych wniosków o ich funkcjonalności. Kluczowe w zrozumieniu tej różnicy jest dostrzeganie, że rejestry operują w kontekście czasu i synchronizacji, co jest niezbędne do efektywnego zarządzania danymi w układach cyfrowych. Zrozumienie tych podstawowych różnic jest niezbędne do prawidłowego projektowania oraz analizy systemów cyfrowych.

Pytanie 3

W sieci o adresie 192.168.20.0 użyto maski podsieci 255.255.255.248. Jak wiele adresów IP będzie dostępnych dla urządzeń?

A. 510
B. 6
C. 1022
D. 14
Wybór odpowiedzi 1022, 510 lub 14 jest wynikiem nieporozumienia dotyczącego obliczania dostępnych adresów IP w danej podsieci. W przypadku maski 255.255.255.248, kluczowe jest zrozumienie, że używamy 3 bitów do identyfikacji hostów, co prowadzi do 8 potencjalnych adresów IP. Błędne odpowiedzi mogą wynikać z mylnego założenia, że maska podsieci może obsługiwać więcej adresów, co jest nieprawidłowe. Standardowe reguły dotyczące adresowania IP wskazują, że każdy adres sieciowy oraz adres rozgłoszeniowy nie mogą być przypisane do urządzeń, co ogranicza liczbę dostępnych adresów do 6. W praktyce, oszacowywanie liczby adresów dostępnych dla hostów w danej podsieci wymaga znajomości reguł dotyczących rezerwacji adresów, co jest kluczowe w planowaniu adresacji sieci. Typowe błędy myślowe to na przykład nieświadomość, że liczba adresów IP w danej podsieci zawsze jest mniejsza o dwa w stosunku do liczby bitów używanych do identyfikacji hostów. Takie nieporozumienia mogą prowadzić do niewłaściwego przypisywania adresów IP i problemów z konfiguracją sieci, co może wyniknąć z braku znajomości podstawowych zasad dotyczących maski podsieci i jej wpływu na adresację.

Pytanie 4

Jaką maksymalną liczbę hostów można przypisać w lokalnej sieci, dysponując jedną klasą C adresów IPv4?

A. 254
B. 510
C. 255
D. 512
Maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem adresów klasy C, często bywa niewłaściwie interpretowana. Odpowiedzi 512, 510, oraz 255 sugerują, że liczby te mogą być uznawane za poprawne w kontekście bloków adresów IP. Warto jednak zrozumieć, że adres klas C z maską 255.255.255.0 pozwala na 256 adresów IP. Wiele osób myli liczbę adresów dostępnych dla hostów z ogólną liczbą adresów IP w danym bloku. Adres sieci i adres rozgłoszeniowy są zarezerwowane i nie mogą być przypisane urządzeniom, co znacząco wpływa na dostępność adresów. Odpowiedzi, które sugerują liczbę 255, pomijają fakt, że adres rozgłoszeniowy również musi być uwzględniony jako niewykorzystany. Propozycja 510 odnosi się do nieprawidłowego zrozumienia adresacji IP, gdzie ktoś mógłby pomyśleć, że dwa adresy można by jakoś 'przywrócić' lub zarządzać nimi w sposób, który narusza zasady przydzielania adresów IP. Natomiast 512 jest absolutnie niepoprawne, gdyż liczba ta przekracza całkowitą liczbę adresów IP dostępnych w bloku klasy C. Kwestia właściwego zrozumienia struktury adresowania IPv4 jest kluczowa dla projektowania i zarządzania sieciami, a stosowanie się do standardów i dobrych praktyk jest niezbędne dla zapewnienia prawidłowego funkcjonowania infrastruktury sieciowej.

Pytanie 5

Jaką funkcję serwera z grupy Windows Server trzeba dodać, aby serwer mógł realizować usługi rutingu?

A. Usługi domenowe w usłudze Active Directory
B. Serwer sieci Web (IIS)
C. Usługi zasad i dostępu sieciowego
D. Usługi zarządzania dostępu w usłudze Active Directory
Wybór serwerów jak IIS, Usługi domenowe w Active Directory czy Usługi zarządzania dostępem w Active Directory, moim zdaniem, nie pasuje do tematu rutingu. IIS służy do hostowania stron i aplikacji, ale nie ma to nic wspólnego z rutingiem. Jego zadanie to dostarczanie treści, a nie zarządzanie ruchem w sieci. Tak samo, Usługi domenowe w Active Directory pomagają w zarządzaniu tożsamością i dostępem, ale nie zajmują się bezpośrednio routingiem. To one pozwalają nam centralnie zarządzać użytkownikami, ale nie mają nic wspólnego z kierowaniem ruchem. Usługi zarządzania dostępem też skupiają się raczej na autoryzacji i kontroli dostępu do zasobów. Często mylimy te pojęcia i to prowadzi do błędnych wyborów, bo nie mamy pełnej jasności, jakie funkcje są odpowiedzialne za konkretne zadania w IT.

Pytanie 6

Zrzut ekranu ilustruje wynik polecenia arp -a. Jak należy zrozumieć te dane?

Ikona CMDWiersz polecenia
C:\>arp -a
Nie znaleziono wpisów ARP

C:\>

A. Adres MAC hosta jest niepoprawny
B. Host nie jest podłączony do sieci
C. Komputer ma przypisany niewłaściwy adres IP
D. Brak aktualnych wpisów w protokole ARP
Polecenie arp -a to naprawdę fajne narzędzie do pokazywania tabeli ARP na komputerze. W skrócie, ARP jest mega ważny w sieciach lokalnych, bo pozwala na odnajdywanie adresów MAC bazując na adresach IP. Jak widzisz komunikat 'Nie znaleziono wpisów ARP', to znaczy, że komputer nie miał ostatnio okazji porozmawiać z innymi urządzeniami w sieci lokalnej. Może to być dlatego, że nic się nie działo albo komputer dopiero co wystartował. Dla adminów sieciowych to dość istotna informacja, bo mogą dzięki temu sprawdzać, czy coś jest nie tak z łącznością. Z tego, co zauważyłem, kiedy urządzenie łączy się z innym w tej samej sieci, ARP automatycznie zapisuje adres MAC przypisany do IP w tabeli. I to, że nie ma wpisów, może też oznaczać, że sieć jest dobrze skonfigurowana i nie było jeszcze żadnych interakcji, które wymagałyby tego tłumaczenia. Ogólnie monitorowanie tabeli ARP to dobry pomysł, bo można szybko wychwycić problemy z łącznością oraz sprawdzić, jak dobrze działa sieć.

Pytanie 7

W przypadku drukarki igłowej, jaki materiał eksploatacyjny jest używany?

A. toner
B. pigment
C. taśma barwiąca
D. atrament
Wybór tuszu, tonera lub pigmentu jako materiałów eksploatacyjnych dla drukarki igłowej jest nietrafiony i wynika z nieporozumienia dotyczącego technologii druku. Tusz jest zazwyczaj używany w drukarkach atramentowych, gdzie cienkie krople atramentu są naniesione na papier przez dysze, co różni się od mechanizmu działania drukarki igłowej. Toner z kolei jest stosowany w drukarkach laserowych; jest to proszek, który jest utrwalany na papierze za pomocą wysokiej temperatury i ciśnienia. W kontekście pigmentu, jest to forma atramentu, ale również nie ma zastosowania w drukarkach igłowych. Warto zwrócić uwagę, że wybór nieodpowiednich materiałów eksploatacyjnych może prowadzić do problemów z jakością druku, a także do uszkodzenia urządzenia. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie różnych technologii druku, co może wynikać z braku zrozumienia zasad działania poszczególnych typów drukarek. W związku z tym, znajomość specyfiki materiałów eksploatacyjnych oraz ich zastosowania jest kluczowa dla efektywnego wykorzystania drukarek w praktyce.

Pytanie 8

Jaki jest adres rozgłoszeniowy w sieci mającej adres IPv4 192.168.0.0/20?

A. 192.168.255.254
B. 192.168.15.255
C. 192.168.15.254
D. 192.168.255.255
Wybór innych opcji jako adresów rozgłoszeniowych w podsieci o adresie 192.168.0.0/20 wynika z typowych nieporozumień dotyczących podziału adresów IP oraz zasad tworzenia podsieci. Adres 192.168.255.255 jest adresem rozgłoszeniowym w innej podsieci, co może wprowadzać w błąd, ponieważ adres ten należy do większego bloku adresowego. Natomiast wybór 192.168.255.254 sugeruje, że to również adres, który nie jest właściwy jako adres rozgłoszeniowy, a jest to jeden z adresów hostów w oddzielnej podsieci. Z kolei 192.168.15.254 to adres hosta, a nie rozgłoszeniowy, co wynika z tego, że najwyższy adres w podsieci zawsze jest zarezerwowany na adres rozgłoszeniowy. W przypadku klas adresowych w IPv4, poszczególne adresy i ich klasy mają swoje specyficzne reguły. Dobrą praktyką jest zawsze ustalanie maski podsieci oraz zrozumienie, które adresy są wykorzystywane w danej sieci. Wspomniane odpowiedzi mogą prowadzić do błędów w konfiguracji sieci, co może wpływać na komunikację pomiędzy urządzeniami. Niepoprawne zrozumienie funkcji adresów IP, w tym różnicy między adresami hostów a rozgłoszeniowymi, może skutkować problemami z dostępnością serwisów czy ich odpowiednią segmentacją w sieciach.

Pytanie 9

Która norma odnosi się do okablowania strukturalnego?

A. ZN-96/TP
B. EIA/TIA 568A
C. TDC-061-0506-S
D. BN-76/8984-09
Wybór innych norm, takich jak ZN-96/TP, BN-76/8984-09 czy TDC-061-0506-S, może wydawać się sensowny, jednak każda z tych norm nie odnosi się bezpośrednio do kwestii okablowania strukturalnego w kontekście sieci telekomunikacyjnych. ZN-96/TP to norma dotycząca telekomunikacji, jednak nie specyfikuje ona szczegółowych wymagań dotyczących okablowania strukturalnego, co jest kluczowe dla prawidłowego działania systemów komunikacyjnych. BN-76/8984-09 jest normą, która odnosi się bardziej do aspektów technicznych związanych z instalacjami elektrycznymi, a nie bezpośrednio do standardów okablowania sieciowego. TDC-061-0506-S, z kolei, jest normą związaną z telekomunikacją, ale nie dostarcza jasnych wytycznych dotyczących strukturalnego okablowania, które zapewnia integralność i wydajność sieci. Typowym błędem w takim przypadku jest mylenie ogólnych norm telekomunikacyjnych z tymi, które precyzyjnie definiują zasady układania kabli oraz ich zastosowania w kontekście okablowania strukturalnego. Zrozumienie różnicy między tymi normami jest kluczowe dla prawidłowego projektowania i wdrażania systemów telekomunikacyjnych, które muszą spełniać najwyższe standardy jakościowe.

Pytanie 10

Główną czynnością serwisową w drukarce igłowej jest zmiana pojemnika

A. z taśmą
B. z fluidem
C. z atramentem
D. z tonerem
Wybór odpowiedzi związanych z atramentem, tonerem czy fluidem jest błędny, ponieważ nie odpowiadają one podstawowemu mechanizmowi pracy drukarek igłowych. Drukarki atramentowe używają wkładów z atramentem, które nanoszą kolor za pomocą mikroskopijnych dysz. W przypadku tonerów, są one stosowane w drukarkach laserowych, gdzie obraz jest tworzony na zasadzie elektrostatycznej. Wykorzystywanie fluidów jest bardziej typowe w kontekście niektórych urządzeń do druku sublimacyjnego czy specjalistycznych procesów druku, które są całkowicie różne od technologii igłowej. Typowym błędem myślowym jest mylenie technologii drukowania z różnymi rodzajami drukarek. Każda technologia ma swoje charakterystyczne cechy i zastosowania, a zrozumienie ich różnic jest kluczowe dla prawidłowego doboru sprzętu do zadania. W praktyce, dla osób pracujących z drukarkami, ważne jest, aby znały one rodzaj posiadanego sprzętu i odpowiednie materiały eksploatacyjne, co pozwala uniknąć nieporozumień i zapewnić efektywność pracy. Dlatego fundamentalne jest prawidłowe rozumienie, że igły w drukarkach igłowych nie współpracują z atramentem ani tonerami, lecz z taśmami barwiącymi.

Pytanie 11

Jakie urządzenie umożliwia zwiększenie zasięgu sieci bezprzewodowej?

A. Modem VDSL
B. Konwerter mediów
C. Wzmacniacz sygnału
D. Przełącznik zarządzalny
Wzmacniacz sygnału to urządzenie, które działa na zasadzie odbierania i retransmisji sygnału bezprzewodowego, co pozwala na zwiększenie zasięgu sieci Wi-Fi. Działa to w praktyce poprzez wzmocnienie sygnału, który w przeciwnym razie mógłby być zbyt słaby, aby dotrzeć do odległych miejsc w budynku lub na zewnątrz. Stosowanie wzmacniaczy sygnału jest szczególnie przydatne w dużych domach, biurach czy obiektach przemysłowych, gdzie występują przeszkody, takie jak ściany czy meble, które mogą tłumić sygnał. Zgodnie z dobrymi praktykami branżowymi, przed zakupem wzmacniacza warto przeprowadzić pomiar zasięgu istniejącej sieci, aby odpowiednio dobrać lokalizację wzmacniacza, co zapewni maksymalną efektywność. Wzmacniacze sygnału są również często wykorzystywane w sytuacjach, gdy istnieje potrzeba pokrycia zasięgiem rozległych terenów, takich jak parki, ogrody czy kompleksy sportowe.

Pytanie 12

Na ilustracji przedstawiono końcówkę wkrętaka typu

Ilustracja do pytania
A. krzyżowego
B. torx
C. tri-wing
D. imbus
Grot typu torx charakteryzuje się specyficznym kształtem sześcioramiennej gwiazdy co odróżnia go od innych typów wkrętaków. Został zaprojektowany aby zapewnić lepsze przenoszenie momentu obrotowego co jest istotne w zastosowaniach przemysłowych i motoryzacyjnych. Wkrętaki torx są powszechnie stosowane w przemyśle elektronicznym i komputerowym gdzie wymagana jest precyzja i bezpieczeństwo montażu. Standardy branżowe podkreślają ich odporność na wyślizgiwanie się z łba śruby co zmniejsza ryzyko uszkodzenia powierzchni wokół łączenia. W praktyce wkrętaki torx są używane w montażu urządzeń elektrycznych i mechanicznych gdzie wymagana jest trwałość i niezawodność połączeń. Dzięki swojej konstrukcji umożliwiają zastosowanie wyższego momentu obrotowego bez ryzyka uszkodzenia elementów co jest często wymagane w profesjonalnych warsztatach i liniach montażowych. Używanie narzędzi torx zgodnie z zaleceniami producentów przyczynia się do wydłużenia żywotności sprzętu oraz poprawy efektywności procesów produkcyjnych.

Pytanie 13

ping 192.168.11.3 Jaką komendę należy wpisać w miejsce kropek, aby w systemie Linux wydłużyć domyślny odstęp czasowy między pakietami podczas używania polecenia ping?

A. -s 75
B. -c 9
C. -i 3
D. -a 81
Wybór parametrów -c 9, -a 81 oraz -s 75 nie jest adekwatny do zadania, które dotyczy zwiększenia odstępu czasowego między transmisjami pakietów w poleceniu ping. Parametr -c 9 jest używany do określenia liczby wysyłanych pakietów, co oznacza, że po 9 odpowiedziach ping zatrzyma się. Nie wpływa to na odstęp czasowy, a jedynie na ogólną liczbę wysyłanych zapytań, co może być mylące, gdy celem jest dostosowanie interwału. Z kolei parametr -a 81 nie istnieje w dokumentacji polecenia ping; może on sugerować zamiar użycia opcji, która nie jest związana z przesyłaniem pakietów, co pokazuje nieznajomość podstawowych opcji tego narzędzia. Parametr -s 75 określa rozmiar wysyłanego pakietu i również nie ma związku z odstępem czasowym. Istotnym błędem myślowym jest mylenie parametrów dotyczących liczby, rozmiaru i interwałów pakietów w kontekście ich funkcji. Zrozumienie różnicy między tymi parametrami jest kluczowe w prawidłowym korzystaniu z polecenia ping, a niewłaściwe przypisanie funkcji do opcji może prowadzić do nieefektywnego testowania i analizy połączeń sieciowych.

Pytanie 14

Jaką topologię fizyczną sieci komputerowej przedstawia rysunek?

Ilustracja do pytania
A. Magistrali
B. Siatki
C. Gwiazd
D. Pierścienia
Topologia gwiazdy jest jedną z najbardziej popularnych i najczęściej stosowanych struktur sieciowych. W jej architekturze wszystkie urządzenia są połączone do centralnego punktu, którym jest najczęściej koncentrator lub przełącznik sieciowy. W przypadku awarii centralnego urządzenia cała sieć przestaje działać, co jest jednym z głównych ograniczeń tego rozwiązania. Jednakże prostota instalacji i zarządzania sprawia, że jest to często preferowany wybór w małych i średnich firmach. Topologia magistrali, z kolei, polega na tym, że wszystkie urządzenia są podłączone do jednego przewodu komunikacyjnego, co czyni ją mniej kosztowną pod względem okablowania. Jednakże trudności z diagnozowaniem problemów oraz ograniczona przepustowość sprawiają, że ta topologia jest coraz rzadziej stosowana w nowoczesnych sieciach. Topologia pierścienia, gdzie każde urządzenie jest połączone z dwoma innymi, tworząc zamkniętą pętlę, również ma swoje ograniczenia. W przypadku przerwania pierścienia cała sieć może przestać działać, chyba że zastosuje się dodatkowe mechanizmy redundancji. Każda z tych topologii ma swoje unikalne właściwości, które sprawiają, że są one stosowane w różnych scenariuszach, jednak żadna z nich nie oferuje poziomu niezawodności i skalowalności charakterystycznych dla topologii siatki, stąd wybór innej odpowiedzi byłby błędny w kontekście przedstawionego rysunku.

Pytanie 15

Który z standardów implementacji sieci Ethernet określa sieć opartą na kablu koncentrycznym, gdzie długość segmentu nie może przekraczać 185 m?

A. 10Base-2
B. 100Base-T4
C. 10Base-5
D. 100Base-T2
Wybrane odpowiedzi, takie jak 10Base-5, 100Base-T2 i 100Base-T4, nie są zgodne z opisanym standardem realizacji sieci Ethernet. 10Base-5, znany jako 'Thick Ethernet', również wykorzystuje kabel koncentryczny, jednak jego maksymalna długość segmentu wynosi 500 metrów, co znacząco przekracza wymaganie dotyczące 185 metrów. W efekcie, odpowiedź ta wprowadza w błąd, gdyż dotyczy innego standardu, który nie spełnia kryteriów podanych w pytaniu. Z kolei 100Base-T2 i 100Base-T4 są standardami Ethernet opartymi na kablach skrętkowych, co wyklucza je z możliwości pracy na kablu koncentrycznym. Standard 100Base-T2 obsługuje prędkość przesyłu do 100 Mbps, jednak nie jest przeznaczony do pracy z kablami koncentrycznymi, a zamiast tego korzysta z kabli skrętkowych typu Cat 3. 100Base-T4 również operuje na kablach skrętkowych, umożliwiając przesył danych z prędkością 100 Mbps, ale wymaga zastosowania czterech par przewodów, co jest zupełnie innym podejściem do realizacji sieci. W przypadku wyboru odpowiedzi, kluczowe jest zrozumienie, jakie właściwości i ograniczenia mają różne standardy Ethernet oraz ich zastosowania w praktyce. Typowym błędem myślowym jest skupianie się na prędkości przesyłu danych bez uwzględnienia medium transmisyjnego, co prowadzi do niepoprawnych wniosków co do właściwego standardu sieci.

Pytanie 16

Zgodnie z normą Fast Ethernet 100Base-TX, maksymalna długość kabla miedzianego UTP kategorii 5e, który łączy bezpośrednio dwa urządzenia sieciowe, wynosi

A. 1000 m
B. 100 m
C. 300 m
D. 150 m
Maksymalna długość kabla miedzianego UTP kat. 5e, jeśli mówimy o standardzie Fast Ethernet 100Base-TX, to 100 metrów. To bardzo ważna informacja, szczególnie dla tych, którzy projektują sieci komputerowe. Przekroczenie tej długości może spowodować, że sygnał się pogorszy, a to może wpłynąć na działanie całej sieci. Kabel kat. 5e jest często używany w lokalnych sieciach (LAN) i pozwala na przesyłanie danych z prędkością do 100 Mbps. Standard 100Base-TX korzysta z skręconych par, więc dla najlepszego działania długość kabla nie powinna być większa niż 100 metrów. W praktyce warto pamiętać, że musimy brać pod uwagę nie tylko sam kabel, ale także różne elementy, takie jak gniazdka, złącza czy urządzenia aktywne, bo to też wpływa na długość połączenia. Co więcej, planując instalację, dobrze jest unikać zakłóceń elektrycznych, które mogą obniżyć jakość sygnału. To są dobre praktyki w branży IT – warto o tym pamiętać.

Pytanie 17

Zjawisko przekazywania tokena (ang. token) występuje w sieci o fizycznej strukturze

A. gwiazdy
B. pierścienia
C. magistrali
D. siatki
Przekazywanie żetonu w sieci o strukturze fizycznej pierścienia jest kluczowym mechanizmem działania tej topologii. W topologii pierścienia każdy węzeł (urządzenie) jest połączony z dwoma innymi, tworząc zamknięty cykl. W takim układzie dane są przesyłane w formie żetonu, który krąży w sieci. Gdy węzeł otrzymuje żeton, może go wykorzystać do przesłania swoich danych, a następnie przekazuje go dalej. Przykładami zastosowania tej topologii są starsze sieci Token Ring, które były powszechnie używane w biurach. Taki system ogranicza kolizje, ponieważ tylko jeden węzeł ma prawo do nadawania w danym momencie, co zwiększa efektywność transmisji. W praktyce, aby tak zbudowana sieć działała sprawnie, kluczowe jest przestrzeganie zasad dotyczących synchronizacji czasowej oraz zarządzania pasmem, co jest zgodne z najlepszymi praktykami w projektowaniu sieci komputerowych. Również standardy takie jak ISO/IEC 8802-3 określają zasady działania w takiej strukturze, co potwierdza jej zastosowanie w profesjonalnych środowiskach.

Pytanie 18

Wskaź 24-pinowe lub 29-pinowe złącze żeńskie, które jest w stanie przesyłać skompresowany sygnał cyfrowy do monitora?

A. DVI
B. RCA
C. VGA
D. HDMI
RCA to złącze, które zostało zaprojektowane głównie do przesyłania analogowego sygnału audio i wideo. Nie jest w stanie przesyłać skompresowanego cyfrowego sygnału wideo, co czyni je nieodpowiednim wyborem w kontekście nowoczesnych technologii monitorów. Złącze HDMI (High-Definition Multimedia Interface) jest nieco bardziej skomplikowane, ponieważ może przesyłać zarówno sygnał wideo, jak i audio w formacie cyfrowym, jednak nie odpowiada wymaganiom dotyczącym 24 lub 29-pinowego złącza żeńskiego. Z kolei VGA (Video Graphics Array) jest analogowym standardem, który nie obsługuje sygnałów cyfrowych i w rezultacie nie zapewnia takiej samej jakości obrazu jak DVI. Typowe błędy myślowe, które prowadzą do wyboru tych opcji, mogą wynikać z niepełnego zrozumienia różnicy między sygnałami analogowymi a cyfrowymi, oraz zastosowania złączy w praktyce. Współczesne rozwiązania w dziedzinie technologii multimedialnych silnie opierają się na cyfrowych standardach, a złącze DVI jest jednym z kluczowych elementów w tym kontekście.

Pytanie 19

W dokumentacji systemu operacyjnego Windows XP opisano pliki o rozszerzeniu .dll. Czym jest ten plik?

A. uruchamialnego
B. dziennika zdarzeń
C. inicjalizacyjnego
D. biblioteki
Wybór odpowiedzi związanych z dziennikiem zdarzeń, plikami inicjalizacyjnymi czy uruchamialnymi wskazuje na pewne nieporozumienia dotyczące funkcji i charakterystyki plików w systemie Windows. Dzienniki zdarzeń są odpowiedzialne za rejestrowanie działań systemowych i nie mają związku z dynamicznymi bibliotekami, które są z natury współdzielonymi zasobami programowymi. Pliki inicjalizacyjne, takie jak .ini, pełnią rolę konfiguracji aplikacji, a nie zawierają kodu wykonywalnego, co jest fundamentalną cechą bibliotek .dll. Z kolei pliki uruchamialne, takie jak .exe, są bezpośrednio wykonywane przez system operacyjny, w przeciwieństwie do .dll, które muszą być załadowane przez inne aplikacje. Istotnym błędem jest łączenie tych terminów, ponieważ każdy z nich odnosi się do innych ról i funkcji w ekosystemie systemu operacyjnego. Aby prawidłowo zrozumieć te zagadnienia, warto zgłębić funkcje różnych typów plików oraz ich interakcje w kontekście architektury systemu, co wykazuje znaczenie plików .dll jako centralnych elementów elastyczności i efektywności działania aplikacji w środowisku Windows.

Pytanie 20

Zdiagnostykowane wyniki wykonania polecenia systemu Linux odnoszą się do ```/dev/sda: Timing cached reads: 18100 MB in 2.00 seconds = 9056.95 MB/sec```

A. karty sieciowej
B. pamięci RAM
C. karty graficznej
D. dysku twardego
Wynik działania polecenia systemu Linux, który przedstawia wartość "Timing cached reads: 18100 MB in 2.00 seconds = 9056.95 MB/sec" dotyczy wydajności odczytu z dysku twardego, który z kolei jest kluczowym komponentem systemu komputerowego. W kontekście diagnostyki, informacja ta wskazuje na prędkość, z jaką system operacyjny może odczytywać dane zapisane na dysku, co jest istotne w kontekście wydajności całego systemu. Przykładem praktycznego zastosowania tego typu pomiaru może być ocena, czy dany dysk twardy spełnia wymagania aplikacji, które wymagają szybkiego dostępu do danych, takich jak bazy danych czy serwery plików. Standardy branżowe, takie jak SATA czy NVMe, definiują różne typy interfejsów, które wpływają na wydajność przesyłu danych. Dobre praktyki wymagają regularnego monitorowania tych parametrów, aby zapewnić optymalną wydajność systemu oraz przewidywać ewentualne problemy z dyskiem, co może zapobiec utracie danych oraz przestojom operacyjnym.

Pytanie 21

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. trzeciej o długości 48 bitów
B. drugiej o długości 48 bitów
C. drugiej o długości 32 bitów
D. trzeciej o długości 32 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przydzielanym każdemu interfejsowi sieciowemu, który korzysta z technologii Ethernet. Jego długość wynosi 48 bitów, co odpowiada 6 bajtom. Adres MAC jest używany w warstwie drugiej modelu OSI, czyli warstwie łącza danych, do identyfikacji urządzeń w sieci lokalnej. Dzięki standardowi IEEE 802.3, każda karta sieciowa produkowana przez różnych producentów otrzymuje unikalny adres MAC, co jest kluczowe dla prawidłowego działania sieci Ethernet. Przykładowo, w zastosowaniach takich jak DHCP (Dynamic Host Configuration Protocol), adres MAC jest niezbędny do przypisania odpowiednich adresów IP urządzeniom w sieci. Ponadto, w praktyce adresy MAC mogą być używane w różnych technologiach zabezpieczeń, takich jak filtracja adresów MAC, co pozwala na kontrolowanie dostępu do sieci. Zrozumienie roli adresu MAC w architekturze sieciowej jest fundamentalne dla każdego specjalisty w dziedzinie IT, a jego poprawne wykorzystanie jest zgodne z najlepszymi praktykami zarządzania siecią.

Pytanie 22

Jak należy postąpić z wiadomością e-mail od nieznanej osoby, która zawiera podejrzany załącznik?

A. Nie otwierać wiadomości, od razu ją usunąć
B. Otworzyć załącznik i zapisać go na dysku, a następnie przeskanować plik programem antywirusowym
C. Otworzyć wiadomość i odpowiedzieć, pytając o zawartość załącznika
D. Otworzyć załącznik, a jeśli znajduje się w nim wirus, natychmiast go zamknąć
Usuwanie wiadomości od nieznanych nadawców, zwłaszcza tych, które zawierają niepewne załączniki, to kluczowy element w utrzymaniu bezpieczeństwa w sieci. Wiele złośliwego oprogramowania jest rozprzestrzenianych poprzez phishing, gdzie cyberprzestępcy podszywają się pod znane źródła w celu wyłudzenia danych osobowych lub zainstalowania wirusów na komputerach użytkowników. Kluczową zasadą bezpieczeństwa jest unikanie interakcji z wiadomościami, które budzą wątpliwości co do ich autentyczności. Na przykład, jeśli otrzymasz e-mail od nieznanego nadawcy z załącznikiem, który nie został wcześniej zapowiedziany, najlepiej jest go natychmiast usunąć. Standardy bezpieczeństwa IT, takie jak te określone przez NIST (National Institute of Standards and Technology), podkreślają znaczenie weryfikacji źródła wiadomości oraz unikania podejrzanych linków i plików. Działania te pomagają minimalizować ryzyko infekcji złośliwym oprogramowaniem i utratą danych. Warto również zainwestować w oprogramowanie antywirusowe oraz edukację na temat rozpoznawania zagrożeń. Przyjmowanie proaktywnego podejścia do bezpieczeństwa informacji jest niezbędne w dzisiejszym, technologicznym świecie.

Pytanie 23

Transmisja danych typu półduplex to transmisja

A. dwukierunkowa naprzemienna
B. dwukierunkowa równoczesna
C. jednokierunkowa z kontrolą parzystości
D. jednokierunkowa z trybem bezpołączeniowym
Transmisja danych typu półduplex jest rzeczywiście transmisją dwukierunkową naprzemienną. Oznacza to, że urządzenia komunikujące się w trybie półduplex mogą wysyłać i odbierać dane, ale nie jednocześnie. Taki sposób transmisji jest często stosowany w aplikacjach, gdzie pełna dwukierunkowość w jednym czasie nie jest wymagana, co pozwala na efektywne wykorzystanie dostępnych zasobów. Przykładem zastosowania półduplexu są radiotelefony, gdzie jedna osoba mówi, a druga musi poczekać na zakończenie nadawania, by odpowiedzieć. W kontekście standardów telekomunikacyjnych, tryb półduplex jest praktyczny w sytuacjach, gdy koszt stworzenia pełnej komunikacji dwukierunkowej byłby zbyt wysoki, na przykład w systemach z ograniczoną przepustowością lub w sieciach bezprzewodowych. Dzięki tej metodzie można skutecznie zarządzać ruchem danych, co przyczynia się do optymalizacji komunikacji i obniżenia ryzyka kolizji pakietów. Półduplex znajduje również zastosowanie w technologii Ethernet, w której urządzenia mogą przesyłać dane w sposób naprzemienny, co zwiększa efektywność użycia medium transmisyjnego.

Pytanie 24

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub przełącznik?

A. pierścienia
B. gwiazdy
C. siatki
D. magistrali
Wybór topologii siatki, magistrali lub pierścienia zamiast gwiazdy może prowadzić do nieporozumień w zakresie projektowania i administracji sieci. Topologia siatki, chociaż zapewnia wysoką odporność na awarie, ponieważ każde urządzenie jest połączone z wieloma innymi, staje się złożona w zarządzaniu i kosztowna w implementacji. W przypadku topologii magistrali, wszystkie urządzenia są podłączone do jednego wspólnego kabla, co stwarza ryzyko, że awaria kabla spowoduje przerwanie komunikacji w całej sieci. Ponadto, trudności w diagnostyce i konserwacji są znacznie większe niż w topologii gwiazdy, gdzie każde urządzenie można zidentyfikować i rozwiązać problemy lokalnie. Topologia pierścienia łączy urządzenia w zamkniętą pętlę, co może prowadzić do problemów z wydajnością oraz awarii całej sieci w przypadku uszkodzenia jednego z połączeń. Zrozumienie tych różnic jest kluczowe dla efektywnego projektowania sieci. W praktyce, topologia gwiazdy jest często preferowana w wielu zastosowaniach, takich jak biura czy szkoły, gdzie elastyczność i łatwość rozbudowy są kluczowe dla efektywności operacyjnej.

Pytanie 25

Pamięć oznaczona jako PC3200 nie jest kompatybilna z magistralą

A. 533 MHz
B. 300 MHz
C. 333 MHz
D. 400 MHz
Odpowiedzi 400 MHz, 333 MHz i 300 MHz mogą wydawać się logicznymi wyborami w kontekście współpracy pamięci PC3200 z magistralą, jednak każda z nich zawiera istotne nieścisłości. Pamięć PC3200 rzeczywiście działa na częstotliwości 400 MHz, co oznacza, że jest w stanie współpracować z magistralą o tej samej prędkości. Jednakże, w przypadku magistrali 333 MHz, co odpowiada pamięci PC2700, pamięć PC3200 będzie działać na obniżonym poziomie wydajności, a jej pełny potencjał nie zostanie wykorzystany. Z kolei magistrala 300 MHz w ogóle nie jest zgodna z parametrami pracy pamięci PC3200, co może prowadzić do jeszcze większych problemów, takich jak błędy w transferze danych czy problemy z synchronizacją. Analogicznie, odpowiedź sugerująca magistralę 533 MHz jest niepoprawna, ponieważ PC3200 nie jest w stanie efektywnie funkcjonować w tym środowisku. W praktyce, najczęstszym błędem przy doborze pamięci RAM jest ignorowanie specyfikacji zarówno pamięci, jak i płyty głównej. Właściwy dobór komponentów jest kluczowy dla zapewnienia stabilności systemu oraz optymalnej wydajności, co jest fundamentem w projektowaniu nowoczesnych komputerów oraz ich usprawnianiu.

Pytanie 26

Na ilustracji przedstawiono symbol urządzenia cyfrowego

Ilustracja do pytania
A. dekodera priorytetowego
B. demultipleksera priorytetowego
C. kodera priorytetowego
D. multipleksera priorytetowego
Dekoder priorytetu, multiplekser priorytetu oraz demultiplekser priorytetu pełnią różne funkcje w systemach cyfrowych, które nie pasują do opisu kodera priorytetu. Dekoder priorytetu w rzeczywistości nie jest standardowym elementem układów cyfrowych. Dekoder ogólnie przekształca kod wejściowy na unikalny sygnał wyjściowy, ale nie jest stosowany do priorytetyzacji sygnałów. Multiplekser priorytetu łączy wiele wejść w jedno wyjście, wybierając jedno z wejść na podstawie sygnału sterującego, ale nie jest związany z hierarchią priorytetów. Jego funkcja to selekcja kanału, a nie ustalanie priorytetu. W przypadku demultipleksera priorytetu mamy do czynienia z procesem odwrotnym do multipleksera gdzie jeden sygnał wejściowy jest kierowany na jedno z wielu wyjść, ponownie bez uwzględnienia priorytetu. Błędne przypisanie funkcji może wynikać z braku zrozumienia, że priorytetyzacja jest specyficzna dla zastosowań, które wymagają rozstrzygania konfliktów między równoczesnymi żądaniami systemowymi co jest istotne w kontekście przerwań sprzętowych i zarządzania zasobami w systemach komputerowych. Zrozumienie różnic między tymi elementami jest kluczowe dla projektowania wydajnych układów cyfrowych zgodnie z najlepszymi praktykami inżynierskimi.

Pytanie 27

Profil użytkownika systemu Windows, który można wykorzystać do logowania na dowolnym komputerze w sieci, przechowywany na serwerze i mogący być edytowany przez użytkownika, to profil

A. obowiązkowy
B. lokalny
C. mobilny
D. tymczasowy
Wybór niepoprawnych odpowiedzi wynika z pomylenia różnych typów profili użytkownika w systemie Windows. Profil tymczasowy jest tworzony podczas sesji, ale po jej zakończeniu nie zachowuje żadnych zmian ani danych użytkownika. To oznacza, że po zakończeniu pracy na komputerze, wszystkie ustawienia i pliki zostaną utracone, co czyni go niewłaściwym wyborem dla osób potrzebujących dostępu do swoich informacji na różnych urządzeniach. Z kolei profil lokalny jest przypisany do konkretnego komputera i nie może być używany na innych urządzeniach, co ogranicza mobilność użytkownika. Użytkownik może logować się tylko na tym samym komputerze, co również stoi w sprzeczności z ideą profilu mobilnego. Natomiast profil obowiązkowy, choć może być przechowywany na serwerze, ma na celu zapewnienie jednolitości środowiska użytkownika poprzez ograniczenie jego możliwości modyfikacji. Użytkownicy z tym profilem nie mogą dokonywać zmian w swoich ustawieniach, co czyni go nieodpowiednim dla osób, które chcą dostosować swoje środowisko robocze. Typowe błędy myślowe, które prowadzą do niepoprawnych wyborów, to mylenie funkcji i możliwości, jakie oferują poszczególne typy profili. Zrozumienie różnic między tymi profilami jest kluczowe dla efektywnego korzystania z systemów operacyjnych oraz zarządzania użytkownikami w organizacji.

Pytanie 28

W biurze rachunkowym znajduje się sześć komputerów w jednym pomieszczeniu, połączonych kablem UTP Cat 5e z koncentratorem. Pracownicy korzystający z tych komputerów muszą mieć możliwość drukowania bardzo dużej ilości dokumentów monochromatycznych (powyżej 5 tys. stron miesięcznie). Aby zminimalizować koszty zakupu i eksploatacji sprzętu, najlepszym wyborem będzie:

A. laserowa drukarka sieciowa z portem RJ45
B. atramentowe urządzenie wielofunkcyjne ze skanerem i faksem
C. laserowe drukarki lokalne podłączone do każdego z komputerów
D. drukarka atramentowa podłączona do jednego z komputerów i udostępniana w sieci
Wybierając laserową drukarkę sieciową z portem RJ45, trafiasz w sedno. Po pierwsze, drukarki laserowe mają dużo tańszy koszt druku na stronę w porównaniu do atramentowych, co ma znaczenie, gdy trzeba zadrukować ponad 5000 stron miesięcznie. Tonery są bardziej przewidywalne i tańsze w dłuższej perspektywie, co na pewno jest plusem. Dzięki RJ45 można podłączyć drukarkę do sieci, więc wszyscy w biurze mogą korzystać z jednego urządzenia, zamiast kupować kilka lokalnych. To nie tylko zmniejsza koszty, ale też ułatwia zarządzanie dokumentami. Wiele nowoczesnych laserówek ma fajne funkcje, jak automatyczne drukowanie dwustronne czy możliwość drukowania z telefonu. To zdecydowanie podnosi ich użyteczność. W praktyce dzięki drukarce sieciowej zyskuje się też na wydajności, bo nie trzeba przeskakiwać między komputerami, żeby coś wydrukować.

Pytanie 29

Na jakich portach brama sieciowa powinna umożliwiać ruch, aby klienci w sieci lokalnej mieli możliwość ściągania plików z serwera FTP?

A. 110 i 995
B. 20 i 21
C. 80 i 443
D. 22 i 25
Odpowiedź 20 i 21 jest prawidłowa, ponieważ te numery portów są standardowymi portami używanymi przez protokół FTP (File Transfer Protocol). Port 21 jest portem kontrolnym, który służy do zarządzania połączeniem, w tym do przesyłania poleceń i informacji o stanie. Z kolei port 20 jest używany do przesyłania danych w trybie aktywnym FTP. W praktyce, kiedy użytkownik w sieci lokalnej łączy się z serwerem FTP, jego klient FTP najpierw łączy się z portem 21, aby nawiązać sesję, a następnie ustala połączenie danych na porcie 20. To podejście jest zgodne z zaleceniami standardów IETF dla protokołu FTP, co czyni je najlepszą praktyką w kontekście transferu plików w sieciach lokalnych oraz w Internecie. Warto również zauważyć, że wiele firewalli i systemów zabezpieczeń wymaga, aby te porty były otwarte, aby umożliwić poprawne funkcjonowanie usług FTP.

Pytanie 30

Dostarczanie błędnych napięć do płyty głównej może spowodować

A. uruchomienie jednostki centralnej z kolorowymi pasami i kreskami na ekranie
B. puchnięcie kondensatorów, zawieszanie się jednostki centralnej oraz nieoczekiwane restarty
C. brak możliwości instalacji oprogramowania
D. wystąpienie błędów pamięci RAM
Podawanie nieprawidłowych napięć do płyty głównej może prowadzić do wielu problemów, lecz niektóre z przedstawionych odpowiedzi są mylące. Na przykład, uruchomienie jednostki centralnej z kolorowymi paskami i kreskami na ekranie sugeruje problemy z kartą graficzną lub błędy w pamięci operacyjnej, a nie bezpośrednio z zasilaniem. Choć niestabilność zasilania może wpływać na działanie grafiki, same kolory i wzory na ekranie są zazwyczaj efektem problemów z renderowaniem, co niekoniecznie jest związane z napięciem dostarczanym do płyty głównej. Co więcej, brak możliwości instalacji oprogramowania zwykle wynika z problemów z systemem operacyjnym lub z jego zgodnością z poszczególnymi komponentami, a nie z napięcia zasilania. Wreszcie wystąpienie błędów pamięci RAM, choć może być związane z nieprawidłowym napięciem, zazwyczaj wskazuje na inne problemy, takie jak uszkodzone moduły pamięci. Kluczowym błędem myślowym w tych odpowiedziach jest mylenie symptomów z przyczynami. W przypadku problemów z komputerem zawsze warto przeprowadzić dokładną diagnostykę, aby zidentyfikować źródło problemu zanim podejmie się działania naprawcze.

Pytanie 31

Komenda systemowa ipconfig pozwala na konfigurację

A. interfejsów sieciowych
B. rejestru systemu
C. atrybutów uprawnień dostępu
D. mapowania dysków sieciowych
Polecenie systemowe ipconfig jest kluczowym narzędziem w systemach operacyjnych Windows, które umożliwia użytkownikom oraz administratorom sieci zarządzanie interfejsami sieciowymi. Przy jego pomocy można uzyskać informacje o konfiguracji sieci, takie jak adresy IP, maski podsieci oraz bramy domyślne dla wszystkich interfejsów sieciowych w systemie. Na przykład, kiedy użytkownik chce sprawdzić, czy komputer ma prawidłowo przydzielony adres IP lub czy połączenie z siecią lokalną jest aktywne, może użyć polecenia ipconfig /all, aby zobaczyć szczegółowe informacje o każdym interfejsie, w tym o kartach Ethernet i połączeniach bezprzewodowych. Ponadto, narzędzie to pozwala na odświeżenie konfiguracji DHCP za pomocą polecenia ipconfig /release oraz ipconfig /renew, co jest szczególnie przydatne w sytuacjach, gdy zmiana adresu IP jest konieczna. W kontekście bezpieczeństwa sieci, regularne monitorowanie konfiguracji interfejsów sieciowych za pomocą ipconfig jest zgodne z najlepszymi praktykami w zarządzaniu infrastrukturą IT.

Pytanie 32

W standardzie Ethernet 100BaseTX konieczne jest użycie kabli skręconych

A. kategorii 5
B. kategorii 3
C. kategorii 2
D. kategorii 1
Wybór skrętki kategorii 1, 2 lub 3 dla technologii 100BaseTX jest błędny z kilku istotnych powodów. Skrętka kategorii 1 nie jest przeznaczona do przesyłania danych cyfrowych; wykorzystywana była głównie w tradycyjnych liniach telefonicznych, co czyni ją niewłaściwą dla nowoczesnych sieci komputerowych. Kategoria 2, chociaż pozwalała na przesyłanie danych do 4 Mbps, jest zbyt ograniczona dla zastosowań wymagających prędkości 100 Mbps, co jest standardem dla 100BaseTX. Kategoria 3, zdolna do przesyłu do 10 Mbps, również nie spełnia wymogów dotyczących nowoczesnych aplikacji sieciowych i nie wspiera tak dużych prędkości transmisji. Skrętki te, będąc przestarzałymi, mogą prowadzić do znacznych strat jakości sygnału oraz zwiększonej liczby błędów w transmisji, co negatywnie wpływa na wydajność i stabilność sieci. W praktyce opieranie się na tych starszych standardach może spowodować poważne problemy w środowisku biurowym lub przemysłowym, gdzie wymagana jest niezawodność i wysoka szybkość przesyłu danych. Dlatego kluczowe jest stosowanie aktualnych technologii, takich jak skrętka kategorii 5, która była specjalnie zaprojektowana do pracy z nowoczesnymi standardami Ethernet, jak 100BaseTX, zapewniając nie tylko odpowiednią wydajność, ale również zgodność z obowiązującymi standardami branżowymi.

Pytanie 33

W skanerze z systemem CIS źródłem światła oświetlającym skanowany dokument jest

A. grupa trójkolorowych diod LED
B. układ żarówek
C. świetlówka
D. lampa fluorescencyjna
Wszystkie inne odpowiedzi, takie jak układ żarówek, świetlówka czy lampa fluorescencyjna, nie są adekwatne dla skanerów z układami CIS. Układ żarówek, choć może zapewniać odpowiednią intensywność światła, nie gwarantuje równomiernego i kontrolowanego oświetlenia, co jest kluczowe w procesie skanowania. Żarówki emitują światło w różnorodnych kierunkach, co może prowadzić do nierównomiernego oświetlenia skanowanej powierzchni, a w rezultacie do gorszej jakości skanowanych obrazów. Świetlówki z kolei, chociaż były popularne w przeszłości, charakteryzują się dłuższym czasem rozgrzewania oraz większym zużyciem energii, co sprawia, że nie są optymalnym rozwiązaniem w nowoczesnych urządzeniach. Lampa fluorescencyjna, podobnie jak świetlówka, ma ograniczenia w zakresie kontroli barwy oraz może wprowadzać zniekształcenia kolorów w obrazach. Użytkownicy mogą mylnie uważać, że te źródła światła są wystarczające, jednak w praktyce ich zastosowanie może prowadzić do strat jakościowych w dokumentach skanowanych. Oparcie się na przestarzałych technologiach oświetleniowych może negatywnie wpłynąć na wydajność skanera i jakość finalnych wyników, dlatego w nowoczesnych skanerach zawsze stosuje się rozwiązania takie jak diody LED, które spełniają współczesne normy jakości i efektywności.

Pytanie 34

Na rysunku można zobaczyć schemat topologii fizycznej, która jest kombinacją topologii

Ilustracja do pytania
A. pierścienia i gwiazdy
B. magistrali i gwiazdy
C. siatki i gwiazdy
D. siatki i magistrali
Topologie sieci komputerowych to kluczowe pojęcie w informatyce, wpływające na wydajność, niezawodność i koszt infrastruktury sieciowej. Topologia pierścienia, w której każde urządzenie jest podłączone do dwóch innych, tworząc zamkniętą pętlę, nie łączy się bezpośrednio z topologią gwiazdy w sposób przedstawiony na rysunku. Topologia pierścienia wymaga, aby dane krążyły w określonym kierunku, co jest niekompatybilne z elastyczną strukturą gwiazdy, która centralizuje połączenia w jednym punkcie. Siatka, chociaż oferuje redundancję poprzez wiele połączeń między urządzeniami, nie jest efektywna kosztowo i technicznie trudna do zarządzania w małych i średnich sieciach, gdzie dominują prostsze struktury. W praktyce, topologia siatki jest stosowana głównie w sieciach o znaczeniu krytycznym, takich jak wojskowe czy telekomunikacyjne, gdzie niezawodność ma kluczowe znaczenie. Magistrala z kolei to linia prosta, do której podłączone są urządzenia, co pozwala na ekonomiczne przesyłanie danych, ale cierpi na ograniczenia związane z przepustowością i odpornością na awarie, ponieważ uszkodzenie magistrali może zatrzymać całą komunikację. Taki układ wymaga terminatorów na końcach, aby zapobiec odbiciom sygnałów. W kontekście pytania, należy zrozumieć, że kombinacja magistrali i gwiazdy jest wyborem oferującym kompromis pomiędzy elastycznością i kosztami, szczególnie w zastosowaniach komercyjnych, gdzie można łatwo dodawać nowe urządzenia do istniejącej infrastruktury bez dużych nakładów inwestycyjnych i technicznych, co czyni ją preferowaną w wielu współczesnych implementacjach sieciowych.

Pytanie 35

Jakie narzędzie jest używane w systemie Windows do przywracania właściwych wersji plików systemowych?

A. sfc
B. replace
C. verifer
D. debug
Wszystkie pozostałe opcje nie są odpowiednie dla przywracania prawidłowych wersji plików systemowych w Windows. 'Replace' jest ogólnym terminem odnoszącym się do procesu zastępowania plików, jednak nie jest to narzędzie ani komenda w systemie Windows, które miałoby na celu naprawę plików systemowych. Użytkownicy często mylą ten termin z funkcjami zarządzania plikami, ale rzeczywiście nie odnosi się on do skanowania ani naprawy plików systemowych. 'Debug' to narzędzie służące głównie do analizy i debugowania aplikacji, a nie do zarządzania plikami systemowymi. Jego głównym celem jest identyfikacja i naprawa błędów w kodzie programów, co jest zupełnie inną funkcjonalnością niż ta, którą oferuje 'sfc'. Z kolei 'verifier' to narzędzie do monitorowania sterowników i sprawdzania ich stabilności, które również nie ma związku z przywracaniem uszkodzonych plików systemowych. Niektórzy użytkownicy mogą myśleć, że wszystkie te narzędzia są zbliżone w swojej funkcji, co prowadzi do nieporozumień. Kluczowym błędem jest założenie, że narzędzia do debugowania czy weryfikacji mogą zastąpić konkretne funkcje skanowania i naprawy systemu, co w praktyce może prowadzić do niewłaściwych działań i wydłużenia czasu rozwiązania problemów z systemem.

Pytanie 36

Który symbol wskazuje na zastrzeżenie praw autorskich?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Rozpoznanie symbolu zastrzeżenia praw autorskich jest kluczowe w zakresie ochrony własności intelektualnej. Błędne interpretacje tych symboli mogą prowadzić do naruszeń praw co ma istotne konsekwencje prawne i finansowe. Symbol R w kółku oznacza znak towarowy który jest zarejestrowany co chroni nazwę lub logo firmy przed nieuprawnionym użyciem przez innych. Jest ono istotne w kontekście budowania marki i ochrony tożsamości biznesowej. Symbol T w kółku nie ma powszechnie uznanego znaczenia w kontekście praw własności intelektualnej i jego użycie jest zazwyczaj nieformalnym oznaczeniem. G w kółku również nie jest standardowo używany w ochronie prawnej chociaż mógłby być utożsamiany z różnymi nieoficjalnymi znaczeniami w zależności od kontekstu. Niezrozumienie różnic między tymi symbolami i ich znaczeniem może prowadzić do błędów w ochronie praw co jest kluczowe w rozwijającym się globalnym rynku. Dlatego edukacja na temat praw własności intelektualnej i związanych z nimi symboli jest niezbędna dla profesjonalistów w każdej branży aby zapewnić prawidłowe zastosowanie i unikanie konfliktów prawnych. Prawidłowe rozpoznanie symbolu praw autorskich pozwala na świadome korzystanie z utworów i przestrzeganie praw twórców co jest fundamentem etycznym i prawnym w wielu dziedzinach działalności zawodowej. Poprawna interpretacja tych symboli jest zatem kluczowa w zarządzaniu własnością intelektualną i ochronie interesów twórców oraz firm.

Pytanie 37

Jakie jest oznaczenie sieci, w której funkcjonuje host o IP 10.10.10.6 klasy A?

A. 10.10.10.255
B. 10.0.0.0
C. 10.10.0.0
D. 10.255.255.255
Adres 10.0.0.0 jest prawidłowym adresem sieci dla hosta o adresie IP 10.10.10.6, ponieważ ten adres IP należy do klasy A. W klasie A, adresy IP są zdefiniowane w taki sposób, że pierwsze 8 bitów (czyli pierwszy oktet) służy do identyfikacji sieci, a pozostałe 24 bity do identyfikacji hostów w tej sieci. W przypadku adresu 10.10.10.6, pierwszym oktetem jest 10, co oznacza, że sieć rozpoczyna się od 10.0.0.0, a wszystkie adresy w tej sieci zaczynają się od 10.x.x.x. W praktyce, adres 10.0.0.0 jest adresem sieci, a zakres adresów hostów w tej sieci wynosi od 10.0.0.1 do 10.255.255.254. Zgodnie z zasadami klasyfikacji adresów IP, adresy w klasie A mają dużą pojemność, co czyni je idealnymi dla dużych organizacji. Ważne jest, aby pamiętać, że adresy takie jak 10.10.0.0 czy 10.10.10.255 nie są poprawnymi adresami sieci dla danego hosta. Standardy takie jak RFC 1918 definiują zakresy adresów prywatnych, do których należy również adres 10.0.0.0, co czyni go idealnym do użytku wewnętrznego w sieciach korporacyjnych.

Pytanie 38

W którym miejscu w edytorze tekstu należy wprowadzić tekst lub ciąg znaków, który ma być widoczny na wszystkich stronach dokumentu?

A. W przypisach końcowych
B. W przypisach dolnych
C. W polu tekstowym
D. W nagłówku lub stopce
Przypisy dolne oraz przypisy końcowe to elementy, które służą do dodawania dodatkowych informacji, przypisów lub komentarzy, ale nie pojawiają się automatycznie na każdej stronie dokumentu. Przypisy dolne są umieszczane na dole strony, na której znajdują się odniesienia, natomiast przypisy końcowe zazwyczaj umieszczane są na końcu całego dokumentu. Używanie tych funkcji jest przydatne w kontekście akademickim lub prawnym, gdzie konieczne jest podanie źródeł informacji, jednak nie spełniają one funkcji umieszczania stałych informacji na każdej stronie. Warto również zwrócić uwagę, że pole tekstowe to narzędzie, które umożliwia wstawienie tekstu w dowolnym miejscu dokumentu, ale również nie ma wpływu na jego automatyczne pojawianie się na wszystkich stronach. Zastosowanie pól tekstowych może prowadzić do chaosu w dokumentach, gdyż są one bardziej elastyczne, ale i mniej uporządkowane. W kontekście standardów dotyczących formatowania dokumentów, kluczowe jest, aby wiedzieć, gdzie umieszczać różne rodzaje informacji, aby zachować przejrzystość i profesjonalizm, co jest często pomijane przez użytkowników, którzy nie są zaznajomieni z typowym formatowaniem dokumentacji.

Pytanie 39

Cechą charakterystyczną transmisji w interfejsie równoległym synchronicznym jest to, że

A. dane są przesyłane bitami w wyznaczonych momentach czasowych, które są określane sygnałem zegarowym CLK
B. dane są przesyłane równocześnie całą szerokością magistrali, a początek oraz koniec transmisji oznaczają bity startu i stopu
C. w ustalonych momentach czasowych, które są wyznaczane sygnałem zegarowym CLK, dane są jednocześnie przesyłane wieloma przewodami
D. początek oraz koniec przesyłanych bit po bicie danych jest sygnalizowany przez bity startu i stopu
Transmisja interfejsem równoległym synchronicznym polega na jednoczesnym przesyłaniu danych przez wiele przewodów w ściśle określonych okresach czasu, które są synchronizowane za pomocą sygnału zegarowego CLK. Ta metoda pozwala na zwiększenie prędkości przesyłania danych, ponieważ wiele bitów informacji może być przekazywanych równocześnie, co jest szczególnie ważne w systemach wymagających dużych przepustowości, takich jak pamięci RAM czy magistrale danych w komputerach. W praktyce, gdy na przykład przesyłamy dane z procesora do pamięci, synchronizowany sygnał zegarowy określa moment, w którym dane są przesyłane, co zapewnia spójność i integralność informacji. Standardy takie jak PCI (Peripheral Component Interconnect) czy SATA (Serial Advanced Technology Attachment) wykorzystują techniki transmisji równoległej, co umożliwia efektywne zarządzanie danymi. Zrozumienie tej koncepcji jest kluczowe dla projektantów systemów cyfrowych oraz inżynierów zajmujących się architekturą komputerów.

Pytanie 40

Jakie polecenie w systemie Linux umożliwia wyświetlenie zawartości katalogu?

A. ls
B. rpm
C. pwd
D. cd
Polecenie 'ls' w systemie Linux jest podstawowym narzędziem służącym do wyświetlania zawartości katalogu. Jego nazwa pochodzi od angielskiego słowa 'list', co dokładnie odzwierciedla funkcję, jaką pełni. Używając tego polecenia, użytkownik może szybko zobaczyć pliki i podkatalogi znajdujące się w bieżącym katalogu. Przykładowe zastosowania obejmują użycie 'ls -l', co daje szczegółowy widok na pliki, w tym ich uprawnienia, właścicieli i rozmiary. Użycie 'ls -a' pozwala na zobaczenie również plików ukrytych, które zaczynają się od kropki. Często korzysta się również z opcji sortowania, na przykład 'ls -t', które sortuje pliki według daty modyfikacji. Stosowanie tego polecenia jest zgodne z dobrymi praktykami systemu Unix/Linux, gdzie dostęp do informacji o systemie jest kluczowy dla efektywnego zarządzania danymi i administracji serwerami. Warto dodać, że 'ls' jest niezwykle efektywne, ponieważ działa nie tylko na lokalnych systemach plików, ale również na zdalnych systemach plików zamontowanych w systemie, co czyni je uniwersalnym narzędziem dla administratorów i programistów.