Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 12:33
  • Data zakończenia: 22 maja 2025 12:51

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 35 dB
B. 55 dB
C. 25 dB
D. 45 dB
Odpowiedź 55 dB jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi ochrony zdrowia w miejscu pracy, poziom natężenia dźwięku w pomieszczeniach biurowych, w których wykonywane są zadania wymagające koncentracji, nie powinien przekraczać 55 dB. Wartość ta odnosi się do normy PN-EN ISO 11690-1, która określa na dopuszczalny poziom hałasu w środowisku pracy. W praktyce oznacza to, że w biurze, w którym projektowane są układy elektroniczne, powinno się dążyć do minimalizacji hałasu, aby zapewnić komfort i efektywność pracy. Przykłady działań, które mogą pomóc w osiągnięciu tego celu, to zastosowanie dźwiękoszczelnych paneli akustycznych, ograniczenie liczby urządzeń generujących hałas oraz optymalizacja układu biura w celu stworzenia cichych stref pracy. Utrzymanie poziomu hałasu poniżej 55 dB sprzyja nie tylko wydajności, ale również zdrowiu pracowników, co jest kluczowe w kontekście długotrwałego wpływu hałasu na samopoczucie oraz zdrowie psychiczne.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
B. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
C. licznika wewnętrznych impulsów zegarowych mikroprocesora
D. słowa sterującego, na przykład układem czasowo-licznikowym
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Pierwsza z propozycji mówiąca o 'słowie sterującym' sugeruje, że stos jest powiązany z zarządzaniem sygnałami w mikroprocesorze, co jest błędne. Słowo sterujące to fragment instrukcji, który nie odnosi się do obszaru pamięci, a raczej do operacji jakie mikroprocesor ma wykonać. Odwołując się do drugiej odpowiedzi, lista ostatnio wykonanych rozkazów mikroprocesora jest bardziej związana z rejestrem stanów lub buforami, a nie ze stosami. Stos nie przechowuje rozkazów, ale dane tymczasowe i adresy powrotu. Ponadto, licznik wewnętrznych impulsów zegarowych mikroprocesora to element odpowiedzialny za synchronizację operacji, a nie za przechowywanie danych, co również może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że stos pełni zupełnie inną rolę w architekturze komputerowej. Właściwe zarządzanie pamięcią i zrozumienie struktur danych to podstawowe umiejętności w programowaniu niskopoziomowym. Ignorowanie tych aspektów może prowadzić do nieefektywnego kodu oraz problemów z wydajnością i stabilnością oprogramowania.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 0,2 kΩ
B. 2 kΩ
C. 20 kΩ
D. 200 kΩ
Wartość mierzonej rezystancji można obliczyć korzystając z prawa Ohma, które stanowi, że rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I). W naszym przypadku napięcie wynosi 40 V, a natężenie prądu 20 mA (co odpowiada 0,02 A). Zatem, stosując wzór R = U / I, otrzymujemy R = 40 V / 0,02 A = 2000 Ω, co można przeliczyć na kiloomy: 2000 Ω = 2 kΩ. Ta metoda pomiaru rezystancji jest szeroko stosowana w praktyce, zwłaszcza w elektronice i elektrotechnice, gdzie precyzyjne pomiary są kluczowe dla prawidłowego działania obwodów. Przykładowe zastosowanie można znaleźć w diagnostyce układów elektronicznych, gdzie pomiar rezystancji pozwala na identyfikację uszkodzeń komponentów. W branży stosuje się również tę technikę w różnych standardach pomiarowych, podkreślając jej znaczenie i niezawodność w praktyce.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Siatki.
B. Pierścienia.
C. Drzewa.
D. Gwiazdy.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 15

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Wizualizuje procesy przemysłowe
B. Przekształca sygnał z czujnika
C. Kontroluje pracę siłownika
D. Rejestruje działanie sieci
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Czym jest przerwanie w procesorze?

A. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
B. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
C. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
D. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
Przerwanie w procesorze to mechanizm, który pozwala na tymczasowe zawieszenie aktualnie wykonywanego programu w celu obsługi zadania o wyższym priorytecie. Taki mechanizm jest kluczowy w systemach operacyjnych czasu rzeczywistego, gdzie nieprzerwana obsługa krytycznych zadań jest niezbędna dla zapewnienia stabilności i bezpieczeństwa operacji. Przykładem może być sytuacja w systemie sterowania silnikiem, gdzie priorytetowe zadanie, takie jak reakcja na awarię, musi być wykonane natychmiastowo, nawet kosztem dłużej trwającego przetwarzania mniej krytycznych zadań. Ważne jest, aby procesory i systemy operacyjne implementowały odpowiednie algorytmy do zarządzania priorytetami, takie jak algorytm Round-robin czy FIFO, co zapewnia sprawną i efektywną obsługę zadań. Przerwania wspierają także złożoną synchronizację i komunikację między procesami, co jest fundamentem dla współczesnych architektur komputerowych. W praktyce, znając zasady działania przerwań, inżynierowie mogą skuteczniej projektować systemy, które są odporne na błędy i mają zapewnioną wydajność operacyjną.

Pytanie 19

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. uszkodzenie izolacji
B. przerwanie jednej z żył
C. błędne podłączenie kabla
D. zbyt dużą rezystancję pętli
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Którego rodzaju kabel dotyczy termin STP?

A. Koncentrycznego
B. Skrętki nieekranowanej
C. Światłowodowego
D. Skrętki ekranowanej
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. zwiększyć poziom głośności w unifonie
B. dostosować napięcie w kasecie rozmownej
C. dostosować poziom głośności w zasilaczu
D. zwiększyć napięcie zasilania elektrozaczepu
Regulacja głośności w zasilaczu to bardzo ważny krok, jeśli chcesz, żeby domofon działał prawidłowo. Zasilacz nie tylko daje prąd do urządzenia, ale też wpływa na to, jak dźwięk brzmi. Jak w słuchawce słychać pisk albo rozmowa jest niewyraźna, to znaczy, że coś nie tak z ustawieniem głośności. W praktyce, zasilacze domofonowe często mają potencjometr, który pozwala na dostosowanie dźwięku. Jak zasilacz jest dobrze ustawiony, to powinno być wszystko ładnie słychać. Warto też pamiętać, żeby czasami sprawdzić te ustawienia, bo to wpływa na komfort użytkowania. Jeśli głośność jest za niska, to rzeczywiście można mieć problemy z odbiorem, a to psuje całą zabawę z domofonu.

Pytanie 29

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,01) V
B. U = (5,00 ± 0,05) V
C. U = (5,00 ± 0,07) V
D. U = (5,00 ± 0,02) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Symetryzatora antenowego
B. Czujnika kontaktronowego
C. Zwrotnicy antenowej
D. Zasilacza komputerowego
Zasilacze komputerowe to naprawdę ważne elementy w każdym komputerze, bo to właśnie one dostarczają prąd do wszystkich podzespołów. Ważne, żeby pamiętać o regularnym czyszczeniu elementów chłodzących, takich jak wentylatory i radiatory. Gromadzący się kurz może znacznie ograniczyć ich działanie i prowadzić do przegrzewania zasilacza, co w efekcie może uszkodzić sprzęt. Czyszczenie to nie tylko kwestia wyglądu, ale też bezpieczeństwa i wydajności całego systemu. Z mojego doświadczenia, warto robić to co kilka miesięcy, w zależności od tego, w jakich warunkach pracujemy. Używanie odkurzaczy antystatycznych czy sprężonego powietrza to dobre sposoby na pozbycie się zanieczyszczeń. Troska o zasilacz to klucz do dłuższej żywotności komputera oraz stabilnej pracy.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który rodzaj kondensatora wymaga zachowania polaryzacji podczas jego wymiany?

A. Foliowy
B. Ceramiczny
C. Powietrzny
D. Elektrolityczny
Kondensatory powietrzne, foliowe oraz ceramiczne mają różne właściwości i nie wymagają zachowania polaryzacji podczas wymiany, co może prowadzić do nieporozumień, jeśli ktoś mylnie przypisuje im cechy kondensatorów elektrolitycznych. Kondensatory powietrzne działają na zasadzie izolacji między dwiema elektrodami z powietrzem jako dielektrykiem, co sprawia, że są one neutralne pod względem polaryzacji. Dzięki temu można je podłączać w dowolny sposób, co ułatwia ich wymianę i zastosowanie w różnorodnych układach, takich jak filtry RF czy obwody rezonansowe. Z kolei kondensatory foliowe, które korzystają z dielektryków z tworzyw sztucznych, także nie mają polaryzacji, co czyni je uniwersalnymi elementami w aplikacjach audio i analogowych. W przypadku kondensatorów ceramicznych, które są popularne w zastosowaniach wysokoczęstotliwości, również nie ma znaczenia ich orientacja. To błędne przypisanie cech kondensatorów elektrolitycznych do innych typów prowadzi do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia układów elektronicznych. Użytkownicy powinni być świadomi różnic między tymi typami kondensatorów, aby unikać kosztownych błędów oraz skutecznie dobierać komponenty do odpowiednich zastosowań, zgodnie z najlepszymi praktykami inżynieryjnymi.

Pytanie 36

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. omomierza
B. amperomierza
C. woltomierza
D. częstotliwościomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 37

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. aktywnym inwersyjnym
B. zatkania (odcięcia)
C. nasycenia
D. aktywnym
Odpowiedź "aktywnym" jest prawidłowa, ponieważ w takim ustawieniu tranzystora bipolarnego, złącze BE (baza-emiter) jest spolaryzowane w kierunku przewodzenia, co pozwala na przepływ prądu przez to złącze. Złącze CB (kolektor-baza) jest zaporowo spolaryzowane, co skutkuje brakiem przepływu prądu wstecznego. W efekcie tranzystor działa w trybie aktywnym, co oznacza, że może być używany jako wzmacniacz sygnału. W praktyce, to ustawienie jest kluczowe w zastosowaniach takich jak wzmacniacze audio czy obwody analogowe, gdzie wymagane jest precyzyjne kontrolowanie sygnału. W trybie aktywnym, mała zmiana prądu bazy prowadzi do dużej zmiany prądu kolektora, co czyni tranzystory bipolarne bardzo efektywnymi komponentami w projektowaniu układów elektronicznych. Warto również zauważyć, że w trybie aktywnym tranzystor działa w bezpiecznym zakresie pracy, co jest istotne dla długoterminowej stabilności układów elektronicznych.

Pytanie 38

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 500 zł
B. 2 500 zł
C. 150 zł
D. 750 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 39

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola magnetycznego
B. zmiany temperatury
C. pola elektrycznego
D. zmiany natężenia dźwięku
W kontekście czujników bezpieczeństwa i sygnalizacji, istotne jest zrozumienie, jak różne typy czujników działają oraz jakie zjawiska fizyczne są przez nie wykorzystywane. Zmiana temperatury jest jedną z podstawowych metod detekcji, znaną z czujników termicznych, jednak nie ma zastosowania w przypadku czujników kontaktronowych, które są stworzone do detekcji pola magnetycznego. Czujniki te nie reagują na zmiany temperatury, co może prowadzić do nieporozumień w ich zastosowaniu. Z kolei pole elektryczne jest mechanizmem, na który reagują inne typy czujników, takie jak kondensatory elektryczne, ale nie dotyczy to kontaktronów. Zrozumienie mechanizmu działania tych urządzeń jest kluczowe, aby uniknąć błędnych interpretacji ich funkcji. Ponadto, zmiana natężenia dźwięku jest zjawiskiem, które jest wykorzystywane w czujnikach akustycznych, a nie magnetycznych. Nieprawidłowe przypisanie działania czujnika do niewłaściwego zjawiska fizycznego może prowadzić do błędów w projektowaniu systemów zabezpieczeń. Dlatego niezwykle ważne jest, aby przy projektowaniu systemów alarmowych i zabezpieczeń znać specyfikację oraz zasadę działania używanych urządzeń, co pozwala na ich odpowiednie umiejscowienie i wykorzystanie w praktyce.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.