Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 2 maja 2025 23:26
  • Data zakończenia: 2 maja 2025 23:46

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie polecenie w systemie Linux umożliwia wyświetlenie listy zawartości katalogu?

A. rpm
B. cd
C. pwd
D. ls
Polecenie 'ls' jest fundamentalnym narzędziem w systemach Linux i Unix, służącym do wyświetlania zawartości katalogów. Umożliwia użytkownikom szybkie sprawdzenie, jakie pliki i podkatalogi znajdują się w danym katalogu. Domyślnie, polecenie to wyświetla jedynie nazwy plików, ale można je rozszerzyć o różne opcje, takie jak '-l', co zapewnia bardziej szczegółowy widok z dodatkowymi informacjami, takimi jak uprawnienia, właściciel, grupa, rozmiar plików oraz daty modyfikacji. Użycie 'ls -a' pozwala ponadto na wyświetlenie ukrytych plików, które zaczynają się od kropki. Dobre praktyki w administrowaniu systemem Linux obejmują znajomość i stosowanie polecenia 'ls' w codziennej pracy, co umożliwia skuteczne zarządzanie plikami i katalogami. Przykładowe zastosowanie to: 'ls -lh' w celu uzyskania czytelnych rozmiarów plików oraz 'ls -R' do rekurencyjnego przeszukiwania podkatalogów.

Pytanie 2

Administrator pragnie udostępnić w sieci folder c:\instrukcje tylko trzem użytkownikom z grupy Serwisanci. Jakie działanie powinien podjąć?

A. Udostępnić grupie Serwisanci dysk C: bez ograniczeń dotyczących liczby połączeń równoczesnych
B. Udostępnić grupie Serwisanci folder c:\instrukcje i nie wprowadzać ograniczeń na liczbę połączeń równoczesnych
C. Udostępnić grupie Wszyscy folder C:\instrukcje z ograniczeniem do 3 równoczesnych połączeń
D. Udostępnić grupie Wszyscy cały dysk C: i ustawić limit równoczesnych połączeń na 3
Udostępnienie dysku C: grupie Wszyscy, nawet z ograniczeniem liczby równoczesnych połączeń, jest nieoptymalnym rozwiązaniem, które wprowadza poważne zagrożenia bezpieczeństwa. Przydzielając uprawnienia do całego dysku, administrator naraża system na niebezpieczeństwo, umożliwiając użytkownikom dostęp do wszystkich plików i folderów, które mogą zawierać wrażliwe dane. Taki dostęp mógłby prowadzić do przypadkowego usunięcia lub modyfikacji krytycznych plików systemowych lub danych firmowych. Ograniczenie liczby połączeń równoczesnych nie rozwiązuje tego problemu, ponieważ nawet z ograniczeniem, dostęp do całego dysku pozostaje otwarty. Udostępnienie folderu C:\instrukcje grupie Wszyscy narusza zasady zarządzania bezpieczeństwem, które zalecają stosowanie zasady najmniejszych uprawnień. Zamiast tego, należy tworzyć grupy i przydzielać im dostęp do wybranych plików, co pozwala minimalizować ryzyko. Rozwiązania, które udostępniają cały dysk, są niezgodne z najlepszymi praktykami w zakresie ochrony danych i mogą prowadzić do poważnych naruszeń bezpieczeństwa, które mogą mieć dalekosiężne konsekwencje dla organizacji.

Pytanie 3

Który z interfejsów można uznać za interfejs równoległy?

A. RS232
B. PS/2
C. LPT
D. USB
Wybór interfejsu USB, PS/2 lub RS232 jako odpowiedzi na pytanie o interfejs równoległy wynika z powszechnego mylenia tych standardów z interfejsem równoległym. Interfejs USB (Universal Serial Bus) to standard szeregowy, który przesyła dane jedną linią, co oznacza, że dane są przesyłane w szeregach, a nie równocześnie. Jest to interfejs, który zdobył popularność dzięki swoje elastyczności i wszechstronności w podłączaniu różnych urządzeń do komputerów. Podobnie, PS/2, który jest używany do podłączania urządzeń wejściowych, takich jak klawiatury i myszy, także jest standardem szeregowym. Mimo że PS/2 wygląda na złącze równoległe pod względem konstrukcyjnym, to jego działanie opiera się na przesyłaniu danych w trybie szeregowym. Z kolei RS232 to również interfejs szeregowy, stosowany często w komunikacji z urządzeniami takimi jak modemy. Jego ograniczenia, takie jak niska prędkość transmisji oraz ograniczony zasięg, sprawiają, że jest mniej praktyczny w nowoczesnych zastosowaniach. Błędne podejście do klasyfikacji tych interfejsów jako równoległych może prowadzić do nieprawidłowego zrozumienia architektury systemów komputerowych i ich interakcji z urządzeniami peryferyjnymi. Kluczowe jest zrozumienie, że interfejsy mogą różnić się nie tylko konstrukcją złącz, ale również podstawowym sposobem transmisji danych, co ma istotny wpływ na ich zastosowanie w praktyce.

Pytanie 4

Wskaż tryb operacyjny, w którym komputer wykorzystuje najmniej energii

A. wstrzymanie
B. hibernacja
C. gotowość (pracy)
D. uśpienie
Tryb uśpienia, choć również zmniejsza zużycie energii, nie jest tak efektywny jak hibernacja. W trybie uśpienia komputer pozostaje w stanie aktywności z zachowaną zawartością pamięci RAM, co oznacza, że wymaga ciągłego zasilania, by utrzymać ten stan. To podejście jest przydatne w sytuacjach, gdy użytkownik planuje krótką przerwę, ale w dłuższej perspektywie prowadzi do większego zużycia energii. Gotowość to kolejny tryb, który, podobnie jak uśpienie, nie wyłącza zasilania, co czyni go nieoptymalnym dla dłuższych przerw. Wstrzymanie to stan, który w praktyce nie jest często stosowany jako tryb oszczędzania energii, ponieważ w rzeczywistości nie różni się znacząco od trybu gotowości. Użytkownicy mogą mylnie sądzić, że te tryby są wystarczające dla oszczędzania energii, nie zdając sobie sprawy z ich ograniczeń. Podejmując decyzję o wyborze trybu, ważne jest zrozumienie różnic między nimi oraz ich wpływu na zużycie energii. Zaleca się korzystanie z hibernacji jako najskuteczniejszego rozwiązania dla dłuższych przerw w użytkowaniu, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej.

Pytanie 5

Jednym z metod ograniczenia dostępu do sieci bezprzewodowej dla osób nieuprawnionych jest

A. dezaktywacja szyfrowania
B. zmiana częstotliwości przesyłania sygnału
C. zatrzymanie rozgłaszania identyfikatora sieci
D. zmiana standardu zabezpieczeń z WPA na WEP
Zmiana kanału nadawania sygnału w sieci bezprzewodowej nietrafnie postrzegana jest jako skuteczny sposób na zwiększenie bezpieczeństwa. Przesunięcie kanału może wprawdzie poprawić jakość sygnału i zmniejszyć zakłócenia, szczególnie w obszarach o dużej liczbie konkurencyjnych sieci, jednak nie wpływa to na bezpieczeństwo samej sieci. Potencjalny intruz nadal może bez problemu zidentyfikować sieć, o ile zna lub może odczytać jej SSID. W przypadku wyłączenia szyfrowania, co również jest przedstawione w odpowiedziach, sytuacja staje się jeszcze bardziej niebezpieczna, ponieważ otwiera to sieć na nieautoryzowany dostęp. Użycie przestarzałego standardu szyfrowania, jak WEP, jest kolejnym błędem, ponieważ jest on łatwy do złamania, co sprawia, że sieć staje się bardzo podatna na ataki. Dobrym podejściem do zabezpieczeń sieci bezprzewodowych jest stosowanie silnych metod szyfrowania, takich jak WPA2 lub WPA3, a nie obniżanie poziomu bezpieczeństwa. Również pozostawienie SSID widocznym może być mylnym założeniem, które prowadzi do niewłaściwego wrażenia bezpieczeństwa sieci. W praktyce, skuteczne zabezpieczenie sieci wymaga wielowarstwowego podejścia, które łączy w sobie różne techniki i metody ochrony.

Pytanie 6

W systemie dziesiętnym liczba 110011(2) przedstawia się jako

A. 51
B. 53
C. 52
D. 50
Odpowiedź 51 jest poprawna, ponieważ liczba 110011 zapisana w systemie binarnym (dwu-symbolowym) można przeliczyć na system dziesiętny (dziesięcio-symbolowy) przez zsumowanie wartości poszczególnych bitów, które mają wartość 1. W systemie binarnym każdy bit reprezentuje potęgę liczby 2. Rozpoczynając od prawej strony, mamy: 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0, co daje: 32 + 16 + 0 + 0 + 2 + 1 = 51. Przykładem praktycznego zastosowania tej wiedzy jest programowanie, gdzie często spotykamy się z konwersją między systemami liczbowymi, szczególnie przy wykorzystaniu binarnych reprezentacji danych w pamięci komputerowej. Zrozumienie, jak konwertować różne systemy liczbowej, jest kluczowe dla efektywnego programowania oraz pracy z algorytmami, co stanowi standard w informatyce.

Pytanie 7

Jeżeli użytkownik zdecyduje się na pozycję wskazaną przez strzałkę, uzyska możliwość zainstalowania aktualizacji?

Ilustracja do pytania
A. naprawiające krytyczną awarię, która nie dotyczy zabezpieczeń
B. związane z lukami w zabezpieczeniach o najwyższym priorytecie
C. prowadzące do aktualizacji Windows 8.1 do wersji Windows 10
D. odnoszące się do sterowników lub nowego oprogramowania od Microsoft
Opcjonalne aktualizacje w systemie Windows dotyczą często sterowników oraz dodatkowego oprogramowania od firmy Microsoft. Wybór tej opcji może pozwalać użytkownikowi na zainstalowanie nowych wersji sterowników, które mogą poprawić kompatybilność sprzętu oraz wydajność systemu. Dodatkowo mogą obejmować nowe funkcje aplikacji Microsoft, które nie są krytyczne, ale mogą być użyteczne dla użytkownika. W praktyce, dbanie o aktualizację sterowników jest jedną z dobrych praktyk branżowych, ponieważ zapewnia, że sprzęt na którym pracujemy działa optymalnie. Sterowniki są kluczowe zwłaszcza w kontekście nowych urządzeń peryferyjnych, takich jak drukarki czy skanery, które mogą wymagać konkretnej wersji oprogramowania do prawidłowego działania. Instalowanie opcjonalnych aktualizacji może także wprowadzać nowe funkcje lub rozszerzenia do istniejącego oprogramowania, zwiększając jego funkcjonalność. Ważne jest, aby użytkownik regularnie sprawdzał dostępność takich aktualizacji, aby mieć pewność, że korzysta z najnowszych dostępnych technologii, co jest zgodne z najlepszymi praktykami zarządzania systemami IT.

Pytanie 8

W systemie Windows informacje o aktualnym użytkowniku komputera są przechowywane w gałęzi rejestru o skróconej nazwie:

A. HKCR
B. HKCU
C. HKLM
D. HKCC
Odpowiedzi HKCC, HKLM oraz HKCR odnoszą się do innych gałęzi rejestru systemu Windows, które są przeznaczone do różnych celów i nie zawierają ustawień dotyczących bieżącego użytkownika. HKCC, czyli HKEY_CURRENT_CONFIG, przechowuje informacje o bieżącej konfiguracji sprzętowej systemu, co ma zastosowanie w kontekście różnorodnych urządzeń i ich konfiguracji, ale nie dotyczy osobistych ustawień użytkownika. Z kolei HKLM, czyli HKEY_LOCAL_MACHINE, gromadzi dane dotyczące całego systemu operacyjnego oraz wszystkich użytkowników, co czyni tę gałąź odpowiednią do zarządzania globalnymi ustawieniami systemu, ale nie jest skierowana na indywidualne preferencje użytkowników. Natomiast HKCR, czyli HKEY_CLASSES_ROOT, jest używana do przechowywania informacji o zainstalowanych programach i ich powiązaniach z różnymi typami plików, co również nie dotyczy specyficznych ustawień użytkownika. Przykładowym błędem myślowym jest pomylenie pojęć związanych z osobistymi i systemowymi ustawieniami, co może prowadzić do niewłaściwych deklaracji na temat lokalizacji przechowywania danych w rejestrze. Zrozumienie, jakie informacje są przechowywane w poszczególnych gałęziach rejestru, jest kluczowe dla skutecznego zarządzania systemem oraz dla zapewnienia jego prawidłowego funkcjonowania.

Pytanie 9

Wartość sumy liczb binarnych 1010 i 111 zapisana w systemie dziesiętnym to

A. 17
B. 18
C. 16
D. 19
Odpowiedź 17 jest poprawna, ponieważ suma liczb binarnych 1010 i 111 wymaga najpierw przekształcenia tych liczb do systemu dziesiętnego. Liczba binarna 1010 odpowiada liczbie dziesiętnej 10, a liczba 111 to 7 w systemie dziesiętnym. Dodając te dwie wartości, otrzymujemy 10 + 7 = 17. W praktyce, zrozumienie konwersji między systemami liczbowymi jest kluczowe w programowaniu oraz inżynierii komputerowej, gdzie często operujemy na danych w różnych formatach. Przykładem zastosowania tej wiedzy jest programowanie niskopoziomowe, gdzie manipulacje bitami są powszechne. Warto również zauważyć, że w kontekście standardów branżowych, umiejętność dokładnego obliczania wartości w różnych systemach liczbowych jest fundamentalna, np. w systemach cyfrowych lub podczas projektowania algorytmów w językach niskiego poziomu, takich jak assembler. Dlatego umiejętność ta jest niezwykle cenna w codziennej pracy programisty.

Pytanie 10

Aby zredukować kluczowe zagrożenia związane z bezpieczeństwem podczas pracy na komputerze podłączonym do sieci Internet, należy przede wszystkim

A. zainstalować oprogramowanie antywirusowe, zaktualizować bazy wirusów, aktywować zaporę sieciową oraz przeprowadzić aktualizację systemu
B. sprawdzić temperaturę komponentów, podłączyć komputer do zasilacza UPS oraz unikać odwiedzania podejrzanych stron internetowych
C. odsunąć komputer od źródła ciepła, nie przygniatać przewodów zasilających zarówno komputera, jak i urządzeń peryferyjnych
D. wyczyścić wnętrze jednostki centralnej, unikać jedzenia i picia przy komputerze oraz nie udostępniać swojego hasła innym osobom
Wynikający z odpowiedzi, odsunienie komputera od źródła ciepła, czy dbanie o przewody zasilające, są ważnymi aspektami fizycznego bezpieczeństwa komputerów, ale nie chronią one przed zagrożeniami w sieci. W dzisiejszych czasach, kiedy większość ataków na systemy komputerowe odbywa się poprzez Internet, priorytetem powinno być zabezpieczenie oprogramowania. Podobnie, chociaż czyszczenie wnętrza jednostki centralnej oraz unikanie jedzenia przy komputerze są dobrymi praktykami, nie mają one wpływu na ochronę przed złośliwym oprogramowaniem. Używanie zasilaczy UPS jest przydatne w kontekście ochrony sprzętu przed skutkami przerw w zasilaniu, ale nie zabezpiecza przed cyberatakami. Skupienie się na fizycznej ochronie komputera, zaniedbując bezpieczeństwo oprogramowania, jest powszechnym błędem myślowym, który może prowadzić do poważnych konsekwencji. Ostatecznie, najważniejsze jest, aby użytkownicy zdawali sobie sprawę, że zagrożenia w sieci mają znacznie większy wpływ na funkcjonowanie systemów niż czynniki zewnętrzne. Właściwe podejście do bezpieczeństwa wymaga wielowarstwowej strategii, w której priorytetowo traktuje się aktualizacje oprogramowania i odpowiednią konfigurację zapór sieciowych.

Pytanie 11

Określenie najbardziej efektywnej trasy dla połączenia w sieci to

A. conntrack
B. routing
C. tracking
D. sniffing
Analizując inne odpowiedzi, można dostrzec, że sniffing odnosi się do procesu przechwytywania pakietów danych w sieci. Sniffing jest używany w celach diagnostycznych oraz bezpieczeństwa, jednak nie ma nic wspólnego z wyznaczaniem tras. To podejście skupia się na monitorowaniu ruchu, a nie na jego kierowaniu. Kolejną nieprawidłową odpowiedzią jest tracking, który zazwyczaj odnosi się do śledzenia ruchu lub lokalizacji zasobów, ale nie obejmuje aspektów związanych z określaniem optymalnych tras dla przesyłanych danych. Metody te są bardziej związane z analizą niż z routingiem. Natomiast conntrack służy do śledzenia połączeń w sieci w kontekście firewalla i NAT (Network Address Translation). Pomaga w zarządzaniu sesjami, jednak nie zajmuje się bezpośrednio wyznaczaniem tras. Wiele osób może mylić te terminy z routingiem, co wynika z ich bliskiego powiązania z zarządzaniem siecią. Kluczowe jest zrozumienie, że routing dotyczy głównie efektywnego przesyłania danych przez sieć, podczas gdy sniffing, tracking i conntrack są narzędziami pomocniczymi, które pełnią różne, ale niezbędne funkcje w szerszym kontekście zarządzania sieciami.

Pytanie 12

Zaprezentowany schemat ilustruje funkcjonowanie

Ilustracja do pytania
A. plotera grawerującego
B. drukarek 3D
C. skanera płaskiego
D. drukarki laserowej
Skaner płaski to urządzenie, które służy do digitalizacji obrazów poprzez przekształcenie ich na dane cyfrowe. Schemat przedstawiony na obrazku ilustruje typowy proces skanowania płaskiego. Główne elementy to źródło światła, zazwyczaj lampa fluorescencyjna, która oświetla dokument umieszczony na szklanej płycie roboczej. Następnie odbite światło przemieszcza się przez system luster i soczewek, skupiając się na matrycy CCD (Charge-Coupled Device). CCD przekształca światło na sygnały elektryczne, które są przetwarzane przez przetwornik analogowo-cyfrowy (ADC) na cyfrowy obraz. Skanery płaskie są szeroko stosowane w biurach i domach, gdzie umożliwiają łatwe przekształcanie dokumentów i obrazów na formę cyfrową. Standardy branżowe, takie jak rozdzielczość optyczna czy głębia kolorów, określają jakość skanera. Praktyczne zastosowania skanerów obejmują archiwizowanie dokumentów, digitalizację materiałów graficznych i przenoszenie treści do programów do edycji obrazów. Dzięki możliwości uzyskania wysokiej jakości cyfrowych kopii, skanery płaskie pozostają niezastąpionym narzędziem w wielu dziedzinach.

Pytanie 13

Jaką usługą można pobierać i przesyłać pliki na serwer?

A. FTP
B. ICMP
C. CP
D. DNS
FTP, czyli File Transfer Protocol, to standardowy protokół wykorzystywany do przesyłania plików pomiędzy komputerami w sieci. Umożliwia on zarówno pobieranie, jak i przesyłanie plików na serwer. FTP działa na zasadzie klient-serwer, gdzie klient wysyła żądania do serwera, a ten odpowiada na nie, umożliwiając przesył danych. Przykładami zastosowania FTP są przesyłanie plików na serwery internetowe, zarządzanie plikami na serwerach zdalnych oraz synchronizacja danych. W praktyce, wiele aplikacji do zarządzania treścią (CMS) oraz platform e-commerce wykorzystuje FTP do aktualizacji plików i obrazów. Standardy branżowe, takie jak RFC 959, definiują zasady działania FTP, co czyni go niezawodnym narzędziem w zarządzaniu plikami w sieci. Dobrą praktyką jest również stosowanie FTPS (FTP Secure) lub SFTP (SSH File Transfer Protocol), które zapewniają dodatkowe zabezpieczenia w postaci szyfrowania przesyłanych danych, co jest istotne w kontekście ochrony danych wrażliwych.

Pytanie 14

Aby zrealizować usługę zdalnego uruchamiania systemów operacyjnych na komputerach stacjonarnych, należy w Windows Server zainstalować rolę

A. IIS (Internet Information Services)
B. Hyper-V
C. Application Server
D. WDS (Usługi wdrażania systemu Windows)
Hyper-V, Application Server oraz IIS (Internet Information Services) to istotne komponenty systemu Windows Server, jednak nie są one odpowiednie do wdrażania usług zdalnej instalacji systemów operacyjnych. Hyper-V to technologia wirtualizacji, która pozwala na uruchamianie wielu maszyn wirtualnych na jednej fizycznej maszynie, co jest przydatne w kontekście testowania lub uruchamiania aplikacji na różnych systemach operacyjnych, ale nie bezpośrednio do instalacji systemów operacyjnych na stacjach roboczych. Application Server jest zestawem funkcji umożliwiających uruchamianie aplikacji serwerowych, jednak nie wspiera procesu zdalnego wdrażania systemów operacyjnych. IIS to serwer internetowy, który obsługuje aplikacje webowe i usługi, ale także nie jest przeznaczony do zdalnego wdrażania systemów operacyjnych. Typowym błędem myślowym w tym przypadku może być mylenie roli serwera z funkcjami, które są zwłaszcza związane z aplikacjami, a nie z instalacją systemów operacyjnych. Osoby wybierające jedną z tych opcji mogą nie rozumieć specyfiki ról serwera w kontekście ich przeznaczenia. Aby prawidłowo wdrożyć zdalną instalację, ważne jest, aby znać różnice pomiędzy tymi rolami i ich funkcjonalnością, co jest kluczowe w zarządzaniu infrastrukturą IT.

Pytanie 15

W systemie Windows do przeprowadzania aktualizacji oraz przywracania sterowników sprzętowych należy wykorzystać narzędzie

A. fsmgmt.msc
B. wmimgmt.msc
C. certmgr.msc
D. devmgmt.msc
Certmgr.msc to przystawka, która służy do zarządzania certyfikatami w systemie Windows, a nie do instalacji lub przywracania sterowników. Certyfikaty są kluczowe w kontekście bezpieczeństwa sieci, ponieważ pomagają w weryfikacji tożsamości oraz szyfrowaniu danych. Wybór tej przystawki w kontekście zarządzania urządzeniami jest błędny, ponieważ nie ma ona związku z konfiguracją sprzętu. Z kolei fsmgmt.msc to narzędzie do zarządzania udostępnionymi folderami i dostępem do zasobów w sieci, co również nie ma zastosowania w kontekście sterowników. Użytkownicy mogą mylnie uznawać te narzędzia za przydatne w kontekście zarządzania hardwarem, co wynika z braku zrozumienia ich specyficznych funkcji w systemie. Często można spotkać się z przeświadczeniem, że wszelkie narzędzia dostępne w systemie Windows służą do zarządzania urządzeniami, jednak kluczowe jest zrozumienie, że każde z nich ma swoje wyraźnie zdefiniowane zastosowanie. Wreszcie, wmimgmt.msc to przystawka do zarządzania WMI (Windows Management Instrumentation), która służy do monitorowania i zarządzania systemami komputerowymi, ale nie ma bezpośredniego wpływu na sterowniki urządzeń. Użytkownicy mogą mylnie sądzić, że to narzędzie jest odpowiednie do administracji sterownikami, co prowadzi do nieefektywnego zarządzania komputerem i utrudnia rozwiązywanie problemów ze sprzętem. Zrozumienie właściwych zastosowań tych narzędzi jest kluczowe dla efektywnego zarządzania środowiskiem komputerowym.

Pytanie 16

Zamianę uszkodzonych kondensatorów w karcie graficznej umożliwi

A. żywica epoksydowa
B. lutownica z cyną i kalafonią
C. klej cyjanoakrylowy
D. wkrętak krzyżowy i opaska zaciskowa
Wymiana uszkodzonych kondensatorów w karcie graficznej wymaga użycia lutownicy z cyną i kalafonią, ponieważ te narzędzia oraz materiały są kluczowe w procesie lutowania. Lutownica pozwala na podgrzanie styków kondensatora, co umożliwia usunięcie starego elementu i przylutowanie nowego. Cyna, będąca stopem metali, ma odpowiednią temperaturę topnienia, co sprawia, że jest idealnym materiałem do lutowania w elektronice. Kalafonia, z kolei, działa jako topnik, który poprawia przyczepność lutu oraz zapobiega utlenianiu powierzchni lutowanych, co jest istotne dla zapewnienia mocnych i trwałych połączeń. Przykładem praktycznym zastosowania tych narzędzi jest serwisowanie kart graficznych, gdzie kondensatory często ulegają uszkodzeniu na skutek przeciążenia lub starzenia się. Standardy branżowe, takie jak IPC-A-610, podkreślają znaczenie wysokiej jakości lutowania w celu zapewnienia niezawodności urządzeń elektronicznych. Właściwe techniki lutowania nie tylko przedłużają żywotność komponentów, ale również poprawiają ogólną wydajność urządzenia. Dlatego znajomość obsługi lutownicy oraz umiejętność lutowania to niezbędne umiejętności w naprawach elektronicznych.

Pytanie 17

Norma EN 50167 odnosi się do systemów okablowania

A. wertykalnego
B. horyzontalnego
C. szkieletowego
D. sieciowego
Zrozumienie znaczenia różnych typów okablowania w budynkach jest kluczowe dla efektywnej instalacji sieci telekomunikacyjnych. Okablowanie kampusowe odnosi się do połączeń między różnymi budynkami na terenie kampusu, co jest bardziej złożonym zagadnieniem, które wymaga innego podejścia projektowego, zarówno pod kątem odległości, jak i zastosowanych technologii. W przypadku okablowania pionowego, które łączy różne piętra budynku, istotne jest, aby instalacje były zgodne z lokalnymi normami budowlanymi oraz odpowiednio zabezpieczone przed zakłóceniami. Wreszcie, okablowanie szkieletowe to termin używany do opisania infrastruktury sieciowej obejmującej główne elementy, takie jak przełączniki i routery, które są kluczowe dla efektywnego zarządzania ruchem danych. Zbyt często myli się te terminy, co prowadzi do nieprawidłowych założeń w projektowaniu systemów sieciowych. Każdy z tych rodzajów okablowania ma swoje unikalne wymagania i zastosowania, które muszą być starannie rozważone w kontekście całej infrastruktury sieciowej. Dlatego tak ważne jest, aby przy projektowaniu i wdrażaniu systemów okablowania stosować się do odpowiednich norm i standardów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować ryzyko awarii.

Pytanie 18

Ile sieci obejmują komputery z adresami IP i maskami sieci wskazanymi w tabeli?

A. 5
B. 2
C. 4
D. 3
Odpowiedź 3 jest poprawna, ponieważ w analizowanych adresach IP można zidentyfikować trzy różne sieci. Adresy IP 10.120.16.10 i 10.120.18.16, obie z maską 255.255.0.0, należą do tej samej sieci 10.120.0.0. Z kolei adresy 10.110.16.18, 10.110.16.14 z maską 255.255.255.0 są w sieci 10.110.16.0, co oznacza, że są ze sobą powiązane. Ostatni adres 10.130.16.12, również z maską 255.255.255.0, należy do oddzielnej sieci 10.130.16.0. Dlatego wszystkie te adresy IP mogą być uporządkowane w trzy unikalne sieci: 10.120.0.0, 10.110.16.0 oraz 10.130.16.0. Zrozumienie, jak maski podsieci wpływają na podział sieci, jest kluczowe w zarządzaniu i projektowaniu sieci komputerowych. Przykładem zastosowania tej wiedzy jest konfigurowanie routerów i przełączników, które muszą być w stanie prawidłowo rozdzielać ruch między różnymi podsieciami.

Pytanie 19

Połączenia typu point-to-point, realizowane za pośrednictwem publicznej infrastruktury telekomunikacyjnej, oznacza się skrótem

A. VLAN
B. VPN
C. PAN
D. WLAN
VPN, czyli Virtual Private Network, to technologia, która umożliwia tworzenie bezpiecznych połączeń punkt-punkt przez publiczną infrastrukturę telekomunikacyjną. Dzięki użyciu protokołów szyfrujących, takich jak IPSec czy SSL, VPN zapewnia poufność i integralność przesyłanych danych, co czyni go idealnym rozwiązaniem dla firm, które chcą zdalnie łączyć swoich pracowników z siecią lokalną. Przykładem zastosowania VPN może być umożliwienie pracownikom pracy zdalnej z bezpiecznym dostępem do wewnętrznych zasobów firmy, takich jak serwery plików czy aplikacje. Standardy VPN, takie jak L2TP (Layer 2 Tunneling Protocol) czy OpenVPN, są szeroko stosowane w branży, co potwierdza ich niezawodność i bezpieczeństwo. W praktyce, wdrożenie VPN przyczynia się do zwiększenia mobilności pracowników, a także pozwala na ochronę wrażliwych informacji podczas korzystania z publicznych sieci Wi-Fi. Współczesne firmy coraz częściej sięgają po te rozwiązania, aby zwiększyć bezpieczeństwo danych oraz umożliwić płynny dostęp do zasobów bez względu na lokalizację użytkownika.

Pytanie 20

Zidentyfikuj interfejsy znajdujące się na panelu tylnym płyty głównej:

Ilustracja do pytania
A. 2xHDMI, 1xD-SUB, 1xRJ11, 6xUSB 2.0
B. 2xUSB 3.0; 2xUSB 2.0, 1.1; 2xDP, 1xDVI
C. 2xUSB 3.0; 4xUSB 2.0, 1.1; 1xD-SUB
D. 2xPS2; 1xRJ45; 6xUSB 2.0, 1.1
Wybrana odpowiedź jest prawidłowa ponieważ panel tylny przedstawionej płyty głównej rzeczywiście zawiera 2 porty USB 3.0 4 porty USB 2.0 lub 1.1 oraz złącze D-SUB. Porty USB są jednymi z najważniejszych elementów nowoczesnej płyty głównej ponieważ pozwalają na podłączanie szerokiego zakresu urządzeń peryferyjnych od klawiatur i myszek po dyski zewnętrzne i drukarki. USB 3.0 oferuje szybsze prędkości transferu danych sięgające nawet 5 Gb/s co jest szczególnie korzystne dla urządzeń wymagających szybkiego przesyłania danych jak na przykład dyski SSD. Złącze D-SUB znane również jako VGA jest analogowym złączem używanym głównie do podłączania monitorów starszego typu. Pomimo że technologia ta jest już mniej popularna nowoczesne płyty główne nadal oferują takie złącza dla kompatybilności ze starszymi monitorami. Praktycznym zastosowaniem takiego zestawu portów jest możliwość równoczesnego korzystania z innowacyjnych rozwiązań takich jak szybkie nośniki pamięci USB 3.0 oraz starsze urządzenia korzystające z USB 2.0 co czyni płytę wszechstronną i elastyczną w użyciu. Dobór takich interfejsów w płycie głównej jest zgodny z aktualnymi standardami branżowymi zapewniając użytkownikowi szerokie możliwości podłączania urządzeń.

Pytanie 21

Jakie złącze jest potrzebne do podłączenia zasilania do CD-ROM?

A. Mini-Molex
B. Molex
C. 20-pinowe ATX
D. Berg
Wybór niewłaściwego złącza do podłączenia zasilania do CD-ROM może wynikać z nieporozumienia dotyczącego różnych typów złączy dostępnych na rynku komputerowym. Złącze Berg, powszechnie używane do zasilania dysków twardych w starszych komputerach, jest złączem 4-pinowym, ale jego zastosowanie jest ograniczone do urządzeń o niskim poborze mocy. W kontekście CD-ROM-a, które wymagają wyższego poziomu zasilania, złącze Berg nie dostarcza wystarczającej mocy. Mini-Molex, mimo że jest mniejsze niż standardowy Molex, również nie jest standardem w zasilaniu CD-ROM-ów, a jego zastosowanie jest bardziej typowe dla przenośnych urządzeń. Złącze 20-pinowe ATX, z drugiej strony, jest głównie używane do zasilania płyty głównej i nie ma zastosowania w bezpośrednim zasilaniu napędów optycznych. To złącze dostarcza zasilanie do komponentów takich jak procesory i pamięć RAM, ale nie ma odpowiednich napięć do zasilania CD-ROM-a. Wybór złącza do zasilania CD-ROM-a powinien być oparty na jego specyfikacji oraz wymaganiach zasilających, dlatego ważne jest zrozumienie różnic między tymi złączami oraz ich przeznaczeniem, aby uniknąć niezgodności i problemów z funkcjonowaniem sprzętu.

Pytanie 22

Router Wi-Fi działający w technologii 802.11n umożliwia osiągnięcie maksymalnej prędkości przesyłu danych

A. 11 Mb/s
B. 54 Mb/s
C. 1000 Mb/s
D. 600 Mb/s
Odpowiedzi 11 Mb/s, 54 Mb/s oraz 1000 Mb/s są nieprawidłowe w kontekście maksymalnej prędkości transmisji dostępnej dla standardu 802.11n. Standard 802.11b, który działa na prędkości 11 Mb/s, był jednym z pierwszych standardów Wi-Fi, a jego ograniczenia w zakresie prędkości są znane i zrozumiałe w kontekście starszych technologii. Z kolei standard 802.11g, który osiąga maksymalnie 54 Mb/s, zapewnia lepszą wydajność od 802.11b, ale nadal nie dorównuje możliwościom 802.11n. Zrozumienie tych wartości jest kluczowe, aby uniknąć mylnych wniosków o wydajności sieci. Ponadto, odpowiedź wskazująca na 1000 Mb/s jest myląca, ponieważ odnosi się do standardów, które nie są jeszcze powszechnie implementowane w użytkowanych routerach. W rzeczywistości maksymalna prędkość 1000 Mb/s odnosi się do standardu 802.11ac, który wprowadza jeszcze bardziej zaawansowane technologie, takie jak MU-MIMO oraz lepsze wykorzystanie pasma 5 GHz. Typowym błędem jest postrzeganie routerów Wi-Fi jako jedynie komponentów sprzętowych, bez zrozumienia ich pełnych możliwości oraz ograniczeń wynikających z zastosowanych technologii. Użytkownicy powinni być świadomi, że różne standardy mają różne zastosowania i mogą wpływać na to, jak wpływają na codzienne korzystanie z internetu. Dobrze jest również regularnie monitorować wydajność swojego routera oraz dostosowywać jego ustawienia, aby zapewnić optymalną prędkość i niezawodność połączenia.

Pytanie 23

Urządzenie przedstawione na ilustracji, wraz z podanymi danymi technicznymi, może być zastosowane do pomiarów systemów okablowania

Ilustracja do pytania
A. skrętki cat. 5e/6
B. koncentrycznego
C. telefonicznego
D. światłowodowego
Urządzenie przedstawione na rysunku to miernik mocy optycznej, który jest przeznaczony do pomiarów w sieciach światłowodowych. Specyfikacja techniczna obejmuje długości fal 850, 1300, 1310, 1490 i 1550 nm, które są standardowo używane w telekomunikacji światłowodowej. Mierniki mocy optycznej są kluczowymi narzędziami w instalacji i konserwacji sieci światłowodowych, umożliwiając precyzyjne pomiary mocy sygnału, co jest niezbędne do zapewnienia prawidłowej transmisji danych. Pokazane urządzenie posiada dokładność i rozdzielczość odpowiednią dla profesjonalnych zastosowań. Złącza o średnicy 2,5 mm i 125 mm są typowe dla wtyków SC i LC, które są szeroko stosowane w światłowodach. Poprawne działanie takich urządzeń gwarantuje zgodność z normami branżowymi, takimi jak ISO/IEC 11801, które określają standardy dla instalacji okablowania strukturalnego, w tym światłowodowego. Mierniki te są nieocenione w diagnostyce i analizie problemów w transmisji danych, co czyni je nieodzownymi w utrzymaniu wysokiej jakości usług w telekomunikacji.

Pytanie 24

W programie Explorator systemu Windows, naciśnięcie klawisza F5 zazwyczaj powoduje wykonanie następującej operacji:

A. otwierania okna wyszukiwania
B. uruchamiania drukowania zrzutu ekranowego
C. kopiowania
D. odświeżania zawartości bieżącego okna
Klawisz F5 w programie Explorator systemu Windows jest standardowo przypisany do czynności odświeżania zawartości bieżącego okna. Oznacza to, że naciśnięcie tego klawisza spowoduje ponowne załadowanie aktualnych danych wyświetlanych w folderze lub na stronie internetowej. Ta funkcjonalność jest szczególnie przydatna w sytuacjach, gdy chcemy upewnić się, że widzimy najnowsze informacje, na przykład po dodaniu lub usunięciu plików. W praktyce, odświeżanie okna pozwala na szybkie sprawdzenie zmian w zawartości, co jest nieocenione w codziennej pracy z plikami i folderami. Warto zaznaczyć, że jest to zgodne z ogólnym standardem interakcji użytkownika w systemach operacyjnych, gdzie klawisz F5 jest powszechnie używany do odświeżania. W kontekście dobrych praktyk, znajomość skrótów klawiaturowych, takich jak F5, przyczynia się do zwiększenia efektywności pracy i oszczędności czasu, stanowiąc istotny element przeszkolenia użytkowników w zakresie obsługi systemu Windows.

Pytanie 25

Aby poprawić bezpieczeństwo zasobów sieciowych, administrator sieci komputerowej w firmie został zobowiązany do podziału istniejącej lokalnej sieci komputerowej na 16 podsieci. Pierwotna sieć miała adres IP 192.168.20.0 z maską 255.255.255.0. Jaką maskę sieci powinien zastosować administrator?

A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.248
D. 255.255.255.240
Wybór nieprawidłowych masek, takich jak 255.255.255.192, 255.255.255.224 czy 255.255.255.248, wynika z braku zrozumienia zasad podziału sieci i koncepcji maski podsieci. Maska 255.255.255.192 (CIDR /26) dzieli oryginalną sieć na 4 podsieci, co nie spełnia wymogu stworzenia 16 podsieci, a to prowadzi do nieefektywności w wykorzystaniu adresów IP. Z kolei maska 255.255.255.224 (CIDR /27) tworzy 8 podsieci, co również jest niewystarczające. Maska 255.255.255.248 (CIDR /29) generuje 32 podsieci, ale każda z nich ma jedynie 6 dostępnych adresów dla hostów, co może być zbyt ograniczające dla większości zastosowań. Typowe błędy związane z wyborem maski wynikają z niepełnego zrozumienia, jak bity w masce wpływają na liczbę dostępnych podsieci i hostów. Kluczowe w tym kontekście jest właściwe obliczenie liczby potrzebnych podsieci oraz hostów, aby wybrać odpowiednią maskę sieci. Zrozumienie tych zasad jest fundamentalne dla efektywnej administracji i projektowania sieci, co jest zgodne z zasadami inżynierii sieci oraz standardami branżowymi.

Pytanie 26

Licencja Windows OEM nie umożliwia wymiany

A. sprawnego dysku twardego na model o wyższych parametrach
B. sprawnego zasilacza na model o wyższych parametrach
C. sprawnej karty sieciowej na model o wyższych parametrach
D. sprawnej płyty głównej na model o wyższych parametrach
Wybór odpowiedzi dotyczących wymiany sprawnych komponentów, takich jak zasilacz, karta sieciowa czy dysk twardy, wskazuje na niepełne zrozumienie zasad licencjonowania Windows OEM. Licencja ta jest zaprojektowana z myślą o konkretnym sprzęcie, co oznacza, że pozwala na wymianę niektórych elementów komputera, o ile nie naruszają one tożsamości systemu. Na przykład, wymiana zasilacza na model o lepszych parametrach nie wpływa na identyfikację komputera, a tym samym nie wymaga nowej licencji. Podobnie, modernizacja karty sieciowej czy dysku twardego nie wiąże się z koniecznością zmiany licencji, ponieważ te komponenty nie są kluczowe dla identyfikacji sprzętowej maszyny. Błędne rozumienie tego zagadnienia może prowadzić do niepotrzebnych wydatków na nowe licencje lub niepewności w zakresie legalności oprogramowania. Zastosowanie praktycznych zasad dotyczących licencjonowania i aktualizacji sprzętu jest istotnym elementem efektywnego zarządzania zasobami IT w organizacji oraz zapewnienia zgodności z regulacjami prawnymi.

Pytanie 27

Industry Standard Architecture to norma magistrali, według której szerokość szyny danych wynosi

A. 64 bitów
B. 16 bitów
C. 32 bitów
D. 128 bitów
Wybór 128 bitów może sugerować, że masz pojęcie o nowoczesnych standardach komputerowych, ale pomijasz ważny kontekst historyczny związany z ISA. 128-bitowe magistrale to bardziej nowoczesne podejście, wykorzystywane w architekturach SIMD, które głównie są w GPU i niektórych procesorach ogólnego przeznaczenia. W ISA, która powstała w latach 80-tych, zbyt szeroka szyna danych nie była ani wykonalna technicznie, ani potrzebna, biorąc pod uwagę dostępne technologie. Z kolei 64 bity odnoszą się do nowszych standardów jak x86-64, ale w przypadku ISA to nie ma sensu. Często ludzie myślą, że szersza szyna to od razu lepsza wydajność, ale to nie do końca prawda. Warto pamiętać, że sama szerokość szyny to tylko jedna z wielu rzeczy, które wpływają na wydajność systemu. W kontekście ISA, która miała 16-bitową szerokość, kluczowe jest zrozumienie jej ograniczeń i możliwości. Dlatego przy analizie architektur komputerowych warto patrzeć zarówno na historyczne, jak i techniczne aspekty, żeby lepiej zrozumieć, jak technologia komputerowa się rozwijała.

Pytanie 28

Na komputerze klienckim z systemem Windows XP plik "hosts" to plik tekstowy, który wykorzystywany jest do przypisywania

A. nazw hostów na adresy MAC
B. dysków twardych
C. nazw hostów przez serwery DNS
D. nazw hostów na adresy IP
Mapowanie nazw hostów w systemach komputerowych jest kluczowym procesem w komunikacji sieciowej, ale jest to realizowane w różny sposób, co może prowadzić do powszechnych nieporozumień dotyczących roli pliku 'hosts'. Plik ten nie służy do mapowania dysków twardych, co jest technicznie niemożliwe, gdyż funkcjonalność ta odnosi się do lokalnych systemów plików i nie ma związku z systemem nazw domen. Podobnie, nie można używać pliku 'hosts' do mapowania nazw hostów na adresy MAC; adresy MAC są unikalnymi identyfikatorami sprzętowymi i są używane w warstwie łącza danych, podczas gdy plik 'hosts' działa na wyższej warstwie, mapując nazwy na adresy IP, które funkcjonują na warstwie sieciowej. Z kolei odpowiedź dotycząca serwerów DNS również jest myląca, ponieważ 'hosts' działa lokalnie, zanim zapytanie trafi do serwera DNS. Ważne jest, aby zrozumieć, że plik 'hosts' jest często używany jako sposób na przyspieszenie procesu rozwiązywania nazw poprzez lokalne mapowanie, co może zmniejszyć obciążenie serwerów DNS i zwiększyć szybkość dostępu do często używanych zasobów. Te nieporozumienia mogą prowadzić do nieefektywnej konfiguracji sieci oraz problemów z dostępem do zasobów, dlatego istotne jest dokładne zrozumienie roli, jaką odgrywa plik 'hosts' w architekturze sieciowej.

Pytanie 29

Jakim parametrem definiuje się stopień zmniejszenia mocy sygnału w danej parze przewodów po przejściu przez cały tor kablowy?

A. przenik zbliżny
B. tłumienie
C. długość
D. przenik zdalny
Długość przewodów jest ważnym czynnikiem w telekomunikacji, jednak nie jest bezpośrednim parametrem określającym zmniejszenie mocy sygnału. W rzeczywistości, długość wpływa na tłumienie, ponieważ dłuższe przewody mają tendencję do wykazywania większych strat sygnału, ale to tłumienie jest właściwym terminem definiującym te straty. Przenik zdalny i przenik zbliżny odnoszą się do zjawisk związanych z crosstalkiem, czyli zakłóceniami między sąsiednimi torami transmisyjnymi. Przenik zdalny dotyczy zakłóceń, które występują na większej odległości, podczas gdy przenik zbliżny odnosi się do zakłóceń występujących w bezpośredniej bliskości. Oba te zjawiska mogą wpływać na jakość sygnału, ale nie definiują one strat mocy sygnału w torze kablowym. Typowym błędem jest mylenie tych pojęć z tłumieniem, co prowadzi do nieporozumień w ocenie jakości transmisji. Zrozumienie różnic między tymi parametrami jest kluczowe dla prawidłowego projektowania i eksploatacji systemów telekomunikacyjnych, a także dla oceny ich wydajności.

Pytanie 30

Gdzie w systemie Linux umieszczane są pliki specjalne urządzeń, które są tworzone podczas instalacji sterowników?

A. /var
B. /sbin
C. /proc
D. /dev
Katalog /dev w Linuxie to takie miejsce, gdzie trzymamy pliki specjalne, które reprezentują różne urządzenia w systemie. Jak się instaluje sterowniki, to te pliki się tworzą, żeby system mógł rozmawiać z hardware'em. Na przykład, plik /dev/sda to pierwszy dysk twardy w systemie. To dość ciekawe, jak w Unixie wszystko traktuje się jak plik - nawet urządzenia. Warto regularnie sprawdzać, co w /dev siedzi, żeby być pewnym, że wszystko działa jak należy. A w systemach takich jak systemd pliki w tym katalogu mogą się tworzyć lub znikać samoczynnie, więc warto mieć to na oku.

Pytanie 31

Który z wymienionych interfejsów stanowi port równoległy?

A. RS232
B. USB
C. IEEE1394
D. IEEE1294
Wybrane odpowiedzi nie są poprawnymi przykładami portu równoległego. USB, czyli Universal Serial Bus, to interfejs szeregowy, który zyskał ogromną popularność dzięki jego wszechstronności i łatwości użycia. USB przesyła dane w sposób szeregowy, co oznacza, że bity informacji są przesyłane jeden po drugim, co może być mniej efektywne w przypadku dużych ilości danych, ale pozwala na uproszczenie konstrukcji złącza i zmniejszenie kosztów produkcji. RS232 to również standard interfejsu szeregowego, który był szeroko stosowany w komunikacji komputerowej, lecz również nie jest portem równoległym. Jego zastosowanie obejmowało połączenia z modemami i innymi urządzeniami, jednak w dzisiejszych czasach jest już mniej powszechne. IEEE 1394, znany także jako FireWire, jest standardem interfejsu, również szeregowego, który umożliwia przesył danych w dużych prędkościach, głównie w zastosowaniach audio-wideo. Wybór tych interfejsów jako portów równoległych może być mylący, ponieważ mogą one oferować wysoką wydajność, jednak ich architektura jest oparta na przesyłaniu danych w trybie szeregowym, co jest fundamentalnie różne od metody równoległej, stosowanej w IEEE 1294. Warto pamiętać, że mylenie tych standardów może prowadzić do nieefektywnego doboru sprzętu oraz problemów z kompatybilnością w projektach technologicznych.

Pytanie 32

Aby zamontować przedstawioną kartę graficzną, potrzebna jest płyta główna posiadająca złącze

Ilustracja do pytania
A. AGP x2
B. PCI-E x16
C. PCI-E x4
D. AGP x8
Wybór złącza AGP, zarówno w wersji x2, jak i x8, jest błędny ze względu na przestarzałość tej technologii. AGP, czyli Accelerated Graphics Port, był standardem wykorzystywanym w przeszłości do podłączania kart graficznych, jednak został on wycofany na rzecz bardziej współczesnego standardu PCI Express. AGP x2 oferowało bardzo ograniczoną przepustowość w porównaniu do nowoczesnych rozwiązań, co czyniło je niewystarczającym dla dzisiejszych aplikacji graficznych, które wymagają przesyłania znacznie większych ilości danych. AGP x8, choć oferuje większą przepustowość niż AGP x2, nadal nie jest odpowiednie dla współczesnych kart graficznych, które korzystają z zaawansowanych technologii sprzętowych i programowych wymagających znacznie większej przepustowości, jaką zapewnia PCI-E. Z kolei PCI-E x4, choć bardziej nowoczesne niż AGP, ma tylko cztery linie transmisyjne, co ogranicza przepustowość i może stanowić wąskie gardło dla wydajności kart graficznych. Wybór złącza PCI-E x16 jest optymalny ze względu na jego zdolność do obsługi dużych przepływów danych, co jest kluczowe dla renderingu grafiki 3D, obróbki wideo oraz intensywnych aplikacji gamingowych. Dlatego złącza inne niż PCI-E x16 nie spełniają obecnych wymagań sprzętowych dla kart graficznych, które wymagają maksymalnej przepustowości i wydajności przy współczesnych zastosowaniach multimedialnych.

Pytanie 33

Jaki adres IP w systemie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanemu w systemie binarnym?

A. 170.15.160.252
B. 171.15.159.252
C. 171.14.159.252
D. 170.14.160.252
Adres IP zapisany w systemie binarnym 10101010.00001111.10100000.11111100 składa się z czterech oktetów. Aby przekształcić go na system dziesiętny, należy zinterpretować każdy z oktetów oddzielnie. Pierwszy oktet 10101010 to 128 + 32 + 8 = 170, drugi 00001111 to 0 + 0 + 8 + 4 + 2 + 1 = 15, trzeci 10100000 to 128 + 32 = 160, a czwarty 11111100 to 128 + 64 + 32 + 16 + 8 + 4 = 252. Łącząc te wartości, otrzymujemy adres IP w systemie dziesiętnym: 170.15.160.252. Zrozumienie konwersji między systemami liczbowymi jest kluczowe w pracy z sieciami komputerowymi, gdzie adresy IP mają fundamentalne znaczenie dla komunikacji. Przykładowo, w praktycznych zastosowaniach inżynierowie sieciowi często muszą konwertować adresy IP do różnych formatów podczas konfigurowania routerów czy serwerów. Warto również podkreślić, że poprawne zrozumienie adresacji IP jest zgodne z normami TCP/IP, co jest istotne w projektowaniu i wdrażaniu sieci komputerowych.

Pytanie 34

Po zainstalowaniu systemu Linux, użytkownik pragnie skonfigurować kartę sieciową poprzez wprowadzenie ustawień dotyczących sieci. Jakie działanie należy podjąć, aby to osiągnąć?

A. /etc/profile
B. /etc/network/interfaces
C. /etc/resolv.configuration
D. /etc/shadow
Wszystkie inne wskazane odpowiedzi są nieprawidłowe w kontekście konfiguracji karty sieciowej w systemie Linux. Plik /etc/profile nie jest związany z konfiguracją sieci, lecz definiuje ustawienia środowiskowe dla wszystkich użytkowników systemu, takie jak zmienne środowiskowe oraz ścieżki do programów. Z kolei /etc/shadow zawiera zabezpieczone hasła użytkowników i informacje o ich uprawnieniach, a nie ustawienia sieciowe. Użytkownicy często mylą te pliki, co prowadzi do nieporozumień dotyczących ich funkcji i zastosowań. Plik /etc/resolv.configuration (prawdopodobnie chodziło o /etc/resolv.conf) służy do definiowania serwerów DNS, a nie do konfigurowania interfejsów sieciowych. Zrozumienie struktury i przeznaczenia tych plików jest kluczowe, aby uniknąć typowych błędów w administracji systemem. Użytkownicy, którzy nie są świadomi różnicy między tymi plikami, mogą przypadkowo wprowadzić nieprawidłowe zmiany, co może prowadzić do problemów z dostępem do sieci. Praktyka edytowania pliku /etc/network/interfaces jest fundamentalna dla efektywnej pracy z systemami Linux i odzwierciedla standardowe procedury konfiguracyjne w obszarze administracji sieciowej.

Pytanie 35

Rozmiar pliku wynosi 2kB. Jaką wartość to reprezentuje?

A. 16000 bitów
B. 2048 bitów
C. 2000 bitów
D. 16384 bity
Odpowiedzi 2000 bitów oraz 2048 bitów są nieprawidłowe, ponieważ nie opierają się na standardowym przeliczeniu jednostek danych. Odpowiedź 2000 bitów wynika z błędnego zrozumienia koncepcji kilobajta, ponieważ ktoś może błędnie przyjąć, że 1 kB to 1000 bajtów zamiast właściwych 1024 bajtów. Z kolei 2048 bitów wynika z mylenia przeliczenia bajtów z bitami, gdyż nie uwzględnia się, że 1 kB to 1024 bajty, a każdy bajt to 8 bitów. Zatem tak naprawdę 2048 bitów odpowiada 256 bajtom, co nie ma związku z podanym rozmiarem 2 kB. Odpowiedź 16000 bitów również jest błędna, gdyż nie uwzględnia poprawnych przeliczeń, co prowadzi do nieprawidłowych wniosków. Błędy te mogą wynikać z nieaktualnej wiedzy na temat jednostek miary, które są kluczowe w informatyce i technologii komputerowej. Właściwe zrozumienie i przeliczenie bajtów i bitów jest niezbędne do efektywnej pracy z danymi, a także do zrozumienia, jak różne jednostki wpływają na wydajność systemów komputerowych. W praktyce, programiści i inżynierowie IT muszą być świadomi tych przeliczeń, aby podejmować właściwe decyzje dotyczące architektury systemów oraz optymalizacji transferów danych.

Pytanie 36

Laptopy zazwyczaj są wyposażone w bezprzewodowe sieci LAN. Ograniczenia ich stosowania dotyczą emisji fal radiowych, które mogą zakłócać działanie innych, istotnych dla bezpieczeństwa, urządzeń?

A. w mieszkaniu
B. w samolocie
C. w pociągu
D. w biurze
Odpowiedź "w samolocie" jest prawidłowa, ponieważ na pokładach samolotów obowiązują ścisłe przepisy dotyczące korzystania z urządzeń emitujących fale radiowe, w tym komputerów przenośnych. Wysoka częstotliwość fal radiowych może zakłócać działanie systemów nawigacyjnych i komunikacyjnych statku powietrznego. Przykładem mogą być przepisy Międzynarodowej Organizacji Lotnictwa Cywilnego (ICAO), które regulują używanie urządzeń elektronicznych w trakcie lotu. W wielu liniach lotniczych istnieją jasne wytyczne dotyczące korzystania z Wi-Fi oraz innych form komunikacji bezprzewodowej, które są dostępne jedynie w określonych fazach lotu, takich jak po osiągnięciu wysokości przelotowej. To podejście zapewnia bezpieczeństwo zarówno pasażerów, jak i załogi, podkreślając znaczenie przestrzegania regulacji dotyczących emisji fal radiowych w kontekście bezpieczeństwa lotów.

Pytanie 37

Jaki protokół posługuje się portami 20 oraz 21?

A. WWW
B. FTP
C. Telnet
D. DHCP
Wybór protokołów takich jak DHCP, WWW czy Telnet zamiast FTP może wynikać z mylnych założeń dotyczących przeznaczenia i funkcji tych technologii w sieci. DHCP (Dynamic Host Configuration Protocol) jest protokołem odpowiedzialnym za automatyczne przydzielanie adresów IP urządzeniom w sieci lokalnej, co jest zupełnie inną funkcją niż przesyłanie plików. Z kolei WWW (World Wide Web) to zbiór zasobów dostępnych za pośrednictwem protokołu HTTP, który nie korzysta z portów 20 i 21, lecz przede wszystkim z portu 80 dla HTTP i 443 dla HTTPS. Telnet jest natomiast protokołem używanym do zdalnego logowania się na urządzenia sieciowe, które również nie ma związków z transferem plików. Typowym błędem myślowym jest mylenie funkcji protokołów i ich zastosowań. W przypadku FTP, kluczowe jest zrozumienie, że jest to protokół zaprojektowany specjalnie do transferu plików, co odróżnia go od innych protokołów, które mają zupełnie inne cele i zadania w architekturze sieciowej. W związku z tym, wybierając odpowiedzi związane z innymi protokołami, można zgubić się w tym, jakie konkretne porty i funkcje są przypisane do konkretnych zadań w sieci.

Pytanie 38

Podaj właściwe przyporządkowanie usługi z warstwy aplikacji oraz standardowego numeru portu, na którym ta usługa działa?

A. DHCP - 161
B. IMAP - 8080
C. DNS - 53
D. SMTP - 80
Odpowiedzi wskazujące na inne usługi są nieprawidłowe z kilku powodów. Przykładowo, SMTP, czyli Simple Mail Transfer Protocol, służy do przesyłania wiadomości e-mail i standardowo działa na porcie 25, a nie 80. Port 80 jest zarezerwowany dla HTTP, co oznacza, że jest używany do przesyłania danych stron internetowych. W przypadku DHCP, to Dynamic Host Configuration Protocol, jego standardowy port to 67 dla serwera i 68 dla klienta, a nie 161, który jest zarezerwowany dla SNMP (Simple Network Management Protocol). IMAP, czyli Internet Message Access Protocol, używa portu 143 lub 993 w przypadku zabezpieczonej komunikacji SSL/TLS. Wybierając błędne odpowiedzi, można doświadczyć typowych pułapek myślowych, takich jak mylenie portów przypisanych do różnych protokołów lub nieznajomość standardów RFC, które dokładnie definiują te ustawienia. Zrozumienie, które porty są przypisane do konkretnych protokołów, jest kluczowe dla prawidłowej konfiguracji sieci oraz bezpieczeństwa, a mylenie tych wartości prowadzi do problemów z komunikacją w sieci oraz zwiększa ryzyko wystąpienia luk bezpieczeństwa.

Pytanie 39

Aby zweryfikować adresy MAC komputerów, które są połączone z przełącznikiem, można zastosować następujące polecenie

A. show mac address-table
B. ip http port
C. clear mac address-table
D. ip http serwer
Polecenie 'show mac address-table' jest kluczowym narzędziem w diagnostyce i zarządzaniu sieciami komputerowymi. Umożliwia administratorom sieci uzyskanie informacji o adresach MAC urządzeń podłączonych do przełącznika, co jest niezbędne do monitorowania ruchu w sieci oraz rozwiązywania problemów związanych z łącznością. W wyniku wykonania tego polecenia, administrator otrzymuje tabelę, która zawiera adresy MAC, odpowiadające im porty oraz VLAN, co pozwala na łatwe identyfikowanie lokalizacji konkretnego urządzenia w sieci. Przykładowo, w przypadku problemów z dostępnością zasobów, administrator może szybko zlokalizować urządzenie, które nie działa prawidłowo. Dobre praktyki w zarządzaniu sieciami sugerują regularne monitorowanie adresów MAC, aby zapewnić bezpieczeństwo i optymalizację wydajności sieci.

Pytanie 40

Zestaw komputerowy, który został przedstawiony, jest niepełny. Który z elementów nie został wymieniony w tabeli, a jest kluczowy dla prawidłowego funkcjonowania zestawu?

Lp.Nazwa podzespołu
1.Zalman Obudowa R1 Midi Tower bez PSU, USB 3.0
2.Gigabyte GA-H110M-S2H, Realtek ALC887, DualDDR4-2133, SATA3, HDMI, DVI, D-Sub, LGA1151, mATX
3.Intel Core i5-6400, Quad Core, 2.70GHz, 6MB, LGA1151, 14nm, 65W, Intel HD Graphics, VGA, BOX
4.Patriot Signature DDR4 2x4GB 2133MHz
5.Seagate BarraCuda, 3.5", 1TB, SATA/600, 7200RPM, 64MB cache
6.LG SuperMulti SATA DVD+/-R24x,DVD+RW6x,DVD+R DL 8x, bare bulk (czarny)
7.Gembird Bezprzewodowy Zestaw Klawiatura i Mysz
8.Monitor Iiyama E2083HSD-B1 19.5inch, TN, HD+, DVI, głośniki
9.Microsoft OEM Win Home 10 64Bit Polish 1pk DVD

A. Zasilacz
B. Pamięć RAM
C. Wentylator procesora
D. Karta graficzna
Zestaw komputerowy wymaga do swojego działania kilku kluczowych komponentów, ale nie wszystkie elementy są równie niezbędne w podstawowej konfiguracji. Pamięć RAM, choć istotna dla wydajności systemu, nie jest elementem, który można pominąć w kontekście podstawowego uruchomienia komputera. Podobnie, karta graficzna jest wymagana tylko w sytuacjach, gdy komputer jest używany do zaawansowanych aplikacji graficznych lub gier, ale większość nowoczesnych procesorów posiada zintegrowane układy graficzne, które pozwalają na podstawowe użycie komputera. Wentylator procesora, choć zalecany, szczególnie dla utrzymania optymalnej temperatury procesora i zapewnienia jego długowieczności, nie jest absolutnie niezbędny do samego uruchomienia systemu komputerowego, pod warunkiem, że procesor nie osiągnie krytycznych temperatur. Typowy błąd myślowy polega na nieświadomym ignorowaniu roli zasilacza, ponieważ jest on mniej widoczny na poziomie użytkownika niż na przykład karta graficzna czy układ chłodzenia. Zasilacz jest jednak nieodzowny, ponieważ bez niego żaden inny komponent nie będzie mógł działać. To on zasila komputer, dostarczając niezbędną energię do funkcjonowania wszystkich komponentów, a jego brak uniemożliwia jakiekolwiek operacje, nawet te najbardziej podstawowe, jak uruchomienie systemu operacyjnego.