Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 17 maja 2025 13:25
  • Data zakończenia: 17 maja 2025 13:25

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przy wysyłce opakowań zbiorczych substancji niebezpiecznych pochodzących z przemysłu chemicznego do odbiorcy, co należy do nich dołączyć między innymi?

A. kartę charakterystyki produktu
B. informacje technologiczne dotyczące procesu produkcji
C. spis wyników badań jakości używanych surowców
D. karty charakterystyki wszystkich surowców zastosowanych w produkcji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Karta charakterystyki produktu to kluczowy dokument, który musi towarzyszyć opakowaniom zbiorczym substancji niebezpiecznych, zgodnie z wymaganiami europejskiego rozporządzenia REACH oraz przepisami dotyczącymi transportu towarów niebezpiecznych. Dokument ten zawiera szczegółowe informacje na temat właściwości chemicznych substancji, potencjalnych zagrożeń dla zdrowia i środowiska, a także instrukcje dotyczące bezpiecznego stosowania i transportu. Przykładowo, karta charakterystyki może informować o konieczności stosowania odpowiednich środków ochrony osobistej podczas manipulacji substancją. W praktyce, posiadanie aktualnej karty charakterystyki jest niezbędne nie tylko dla producentów, ale także dla dystrybutorów i odbiorców, którzy muszą być świadomi ryzyk związanych z danym produktem. Ponadto, karty charakterystyki są istotnym narzędziem w ocenie ryzyka oraz w procesie zarządzania bezpieczeństwem w miejscu pracy, co jest zgodne z wytycznymi ANSI/AIHA Z10 oraz ISO 45001. Dlatego prawidłowe dołączenie karty charakterystyki do opakowań zbiorczych to kluczowy element zapewniający bezpieczeństwo i zgodność z regulacjami prawnymi.

Pytanie 2

Jakiego typu zawór powinno się zastosować, aby natychmiastowo zatrzymać przepływ cieczy?

A. Grzybkowego
B. Redukcyjnego
C. Zwrotnego
D. Membranowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór grzybkowy jest idealnym rozwiązaniem do nagłego przerwania przepływu cieczy. Jego konstrukcja opiera się na ruchomym grzybku, który podczas działania zaworu zamyka przepływ cieczy w momencie, gdy ciśnienie w systemie wzrasta ponad ustalony poziom. Zawory te są powszechnie stosowane w systemach hydraulicznych oraz pneumatycznych, gdzie nagłe zatrzymanie przepływu jest kluczowe dla bezpieczeństwa urządzeń oraz ochrony instalacji. Przykładem zastosowania mogą być systemy zabezpieczeń w instalacjach przemysłowych, gdzie niekontrolowany wzrost ciśnienia może prowadzić do awarii. Zawory grzybkowe charakteryzują się również dużą responsywnością i niezawodnością, co sprawia, że są preferowane w wielu aplikacjach inżynieryjnych, zgodnie z normami bezpieczeństwa branżowego. Warto również dodać, że ich stosowanie przyczynia się do zwiększenia efektywności systemów, a także do minimalizacji ryzyka poważnych awarii lub wypadków.

Pytanie 3

W przypadku, gdy podczas przeprowadzania przeglądu technicznego poziom drgań wentylatora przekracza wartości dopuszczalne określone przez producenta, zespół nadzorujący powinien zweryfikować

A. smarowanie łożysk
B. stan obudowy
C. współosiowość wałów na sprzęgle
D. smarowanie wału

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca współosiowości wałów na sprzęgle jest kluczowa, gdyż drgania wentylatora mogą być skutkiem niewłaściwej osiowości. Współosiowość wałów ma istotne znaczenie dla prawidłowego działania systemów rotacyjnych, ponieważ każdy błąd w ich ustawieniu prowadzi do zwiększenia obciążenia na łożyskach, co w konsekwencji może skutkować ich przedwczesnym zużyciem oraz wzrostem drgań. Zgodnie z wytycznymi branżowymi, przed rozpoczęciem pracy urządzenia, należy przeprowadzić dokładną inspekcję i regulację współosiowości, co można zrobić za pomocą technologii pomiarowych, takich jak laserowe systemy pomiarowe. Przykładem może być użycie urządzeń do pomiaru drgań, które pozwalają na identyfikację problemów w osiowości wałów, co jest krytyczne w kontekście zapewnienia efektywności energetycznej i minimalizacji kosztów eksploatacji. Przestrzeganie tych praktyk nie tylko zwiększa trwałość komponentów, ale również przyczynia się do poprawy bezpieczeństwa operacyjnego.

Pytanie 4

Grafit stosuje się jako materiał konstrukcyjny w przemyśle chemicznym z powodu

A. odporności na wysokie temperatury, małego przewodnictwa elektrycznego oraz dobrego przewodnictwa cieplnego i właściwości barierowych dla gazów utleniających
B. niskiej reaktywności i odporności na większość substancji chemicznych, hydrofilowości oraz małego przewodnictwa elektrycznego
C. odporności na wysokie temperatury oraz dużej reaktywności, znacznej wytrzymałości mechanicznej i podatności na odkształcenia plastyczne
D. niskiej reaktywności i odporności na większość substancji chemicznych, wysokiej odporności termicznej oraz dobrego przewodnictwa cieplnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Grafit jest niezwykle wartościowym materiałem w przemyśle chemicznym, co wynika z jego niskiej reaktywności oraz odporności na większość czynników chemicznych. Dzięki tym właściwościom grafit znajduje zastosowanie w produkcji sprzętu chemicznego, który musi wytrzymywać trudne warunki pracy, takie jak kontakt z agresywnymi substancjami. Ponadto, wysoka odporność termiczna grafitu sprawia, że jest on idealnym materiałem do użycia w urządzeniach pracujących w ekstremalnych temperaturach, na przykład w piecach przemysłowych. Dobre przewodnictwo cieplne grafitu pozwala na jego zastosowanie w aplikacjach, gdzie efektywne odprowadzanie ciepła jest kluczowe, takich jak elementy grzewcze czy radiatory. W kontekście standardów branżowych, materiały te często podlegają rygorystycznym testom, aby zapewnić ich bezpieczeństwo i efektywność w zastosowaniach przemysłowych, co dodatkowo podkreśla znaczenie grafitu w nowoczesnych technologiach przemysłowych.

Pytanie 5

Aby precyzyjnie zmierzyć temperaturę topnienia i krzepnięcia substancji, należy użyć

A. pirometr optyczny.
B. kriometr.
C. ebuliometr.
D. bomba kalorymetryczna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kriometr jest specjalistycznym narzędziem stosowanym do precyzyjnego oznaczania temperatury topnienia i krzepnięcia substancji. Działa na zasadzie pomiaru zmiany temperatury podczas fazy przejściowej substancji, co pozwala na uzyskanie dokładnych wyników w krótkim czasie. Użycie kriometru jest szczególnie istotne w laboratoriach chemicznych i przemysłowych, gdzie precyzja pomiarów jest kluczowa dla procesów technologicznych oraz badań naukowych. Przykładem zastosowania kriometru może być analiza substancji w przemyśle farmaceutycznym, gdzie dobrze określona temperatura topnienia substancji czynnej jest istotna dla jej jakości i skuteczności. W standardach ASTM i ISO określono metody pomiaru temperatury topnienia przy użyciu kriometrów, co przyczynia się do zapewnienia wysokiej jakości produktów oraz zgodności z regulacjami branżowymi.

Pytanie 6

Reaktor przeznaczony do syntezy metanolu powinien być zbudowany z materiałów charakteryzujących się głównie

A. dużą odpornością na ścieranie i wysokie temperatury
B. małym współczynnikiem przewodnictwa cieplnego
C. niską plastycznością oraz wysoką odpornością na alkalia
D. dużą odpornością na korozję wodorową i karbonylkową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reaktor, który służy do syntezy metanolu, musi być zrobiony z materiałów, które są naprawdę odporne na różne rodzaje korozji, jak korozja wodorowa czy karbonylkowa. Ta pierwsza pojawia się, gdy wodór wchodzi w reakcję z metalami i to może prowadzić do ich degradacji, co nie jest fajne, zwłaszcza przy wysokim ciśnieniu i temperaturze w reaktorze. Dlatego ważne jest, żeby używać dobrych materiałów. Na przykład stal nierdzewna austenityczna albo specjalne stopy metali z molibdenem to naprawdę dobry wybór, bo są znane z tego, że dobrze znoszą korozję. Jak patrzymy na reaktory w zakładach petrochemicznych, to widać, że stosowanie takich materiałów pozwala uniknąć awarii i przestojów w produkcji. To tak z mojego doświadczenia - inżynierowie muszą przestrzegać dobrych praktyk, jak te, które wskazuje ASME, bo mają one duże znaczenie dla bezpieczeństwa i efektywności produkcji.

Pytanie 7

Jakie funkcje pełnią odstojniki?

A. Grawitacyjne oddzielanie ciał stałych od cieczy
B. Przechowywanie nadwyżki surowców
C. Przechowywanie nadwyżki produktów
D. Odśrodkowe oddzielanie ciał stałych od gazów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odstojniki są urządzeniami wykorzystywanymi w różnych procesach przemysłowych do grawitacyjnego oddzielania fazy stałej od ciekłej. Główną zaletą tego procesu jest to, że pozwala on na skuteczne usunięcie osadów i zanieczyszczeń, co jest kluczowe w wielu branżach, takich jak przemysł chemiczny czy petrochemiczny. W zastosowaniach przemysłowych, po wprowadzeniu mieszanki do odstojnika, cieczy o mniejszej gęstości uniesie się ku górze, podczas gdy faza stała opadnie na dno. Dzięki grawitacyjnemu działaniu, proces ten jest znacznie bardziej ekonomiczny i wymaga mniej energii w porównaniu do metod mechanicznych. Przykładem może być proces oczyszczania wód odpadowych, gdzie odstojniki są kluczowe dla separacji osadów, co zwiększa efektywność dalszych procesów oczyszczania. Standardy branżowe, takie jak normy ISO dotyczące jakości wód, wskazują na konieczność stosowania takich systemów separacyjnych w procesach industrialnych, co świadczy o ich istotnym znaczeniu i zastosowaniu.

Pytanie 8

Podczas wprowadzania siarki do pieca cyklonowego należy

A. cyklicznie zmieniać temperaturę siarki w zakresie od 95°C do 150°C
B. utrzymywać stałą temperaturę siarki na poziomie około 120°C
C. nadzorować rozdrobnienie oraz wilgotność surowca
D. kontrolować zawartość czystej siarki w rudzie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Utrzymywanie stałej temperatury siarki na poziomie około 120°C jest kluczowym aspektem w procesie podawania siarki do pieca cyklonowego. W tej temperaturze siarka osiąga optymalny stan płynny, co zapewnia jej efektywne przetwarzanie oraz minimalizuje ryzyko niepożądanych reakcji chemicznych. W praktyce, stała temperatura sprzyja stabilności procesu, co przekłada się na lepszą jakość końcowego produktu. W zastosowaniach przemysłowych, takich jak produkcja kwasu siarkowego, ważne jest, aby proces podawania siarki był kontrolowany, aby uniknąć nadmiernych strat materiałowych i osiągnąć zamierzony poziom wydajności. Przykładem dobrych praktyk branżowych jest zastosowanie systemów automatycznej kontroli temperatury, które pozwalają na precyzyjne dostosowanie warunków pracy pieca w odpowiedzi na zmieniające się parametry surowca, co prowadzi do zwiększenia efektywności produkcji i zmniejszenia ryzyka awarii. Zgodność z normami bezpieczeństwa również wymaga utrzymania optymalnej temperatury, aby zminimalizować ryzyko wybuchów lub innych niebezpiecznych zdarzeń."

Pytanie 9

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na analizowaniu twardości wody w wymienniku
B. Na weryfikacji szczelności połączeń rur w dnie sitowym
C. Na regulacji ilości par odprowadzanych do skraplacza
D. Na regulacji temperatury czynnika grzewczego/chłodzącego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bieżąca kontrola pracy płaszczowo-rurowego wymiennika ciepła polega głównie na regulacji temperatury czynnika grzewczego lub chłodzącego, co jest kluczowe dla efektywności wymiany ciepła. Utrzymanie właściwej temperatury czynnika pozwala na zoptymalizowanie transferu ciepła pomiędzy obiegiem a wymiennikiem, co przekłada się na oszczędności energetyczne oraz minimalizację zużycia mediów. Dobrą praktyką jest monitorowanie parametrów operacyjnych, takich jak temperatura i ciśnienie, co pozwala na szybką reakcję w przypadku jakichkolwiek odchyleń od norm. Przykładem zastosowania tej wiedzy może być przemysł chemiczny, w którym stała kontrola temperatury czynnika chłodzącego jest krytyczna dla stabilności procesu produkcyjnego. Warto również wspomnieć, że zgodnie z normą ASME, regularne przeglądy i kalibracje czujników temperatury są niezbędne dla zapewnienia bezpiecznego i efektywnego działania wymienników ciepła. Takie podejście przyczynia się do dłuższej żywotności urządzeń oraz zwiększenia efektywności energetycznej instalacji.

Pytanie 10

Jakie jest podstawowe zadanie chłodnicy w procesie chemicznym?

A. Zwiększenie objętości przepływu
B. Podniesienie ciśnienia roboczego
C. Obniżenie temperatury cieczy lub gazu
D. Zmniejszenie lepkości płynu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chłodnica w procesach chemicznych pełni kluczową rolę w obniżaniu temperatury cieczy lub gazu. Jest to niezbędne z kilku powodów. Przede wszystkim, wiele reakcji chemicznych wymaga kontrolowanej temperatury, aby przebiegały w sposób bezpieczny i efektywny. Obniżenie temperatury może zapobiec niekontrolowanemu wzrostowi ciśnienia w układzie, który mógłby prowadzić do wybuchów lub uszkodzenia aparatury. Ponadto, w przypadku procesów katalitycznych, odpowiednia temperatura jest kluczowa dla aktywności katalizatora. Chłodnice pomagają również w odzyskiwaniu ciepła, które może być następnie wykorzystane w innych częściach procesu produkcyjnego, co jest zgodne z zasadami efektywności energetycznej. W praktyce przemysłowej, chłodnice są często wykorzystywane w systemach, gdzie medium musi być schłodzone przed dalszymi etapami przetwarzania, jak na przykład w destylacji czy kondensacji. Efektywne chłodzenie wpływa również na jakość końcowego produktu, redukując ryzyko niepożądanych reakcji ubocznych.

Pytanie 11

Jak powinno się działać według zasad technologicznych podczas mielenia surowca do komór koksowniczych?

A. Przerywać mielenie, gdy węgiel jest wymagany do załadunku
B. Mielić aż do momentu, kiedy temperatura węgla osiągnie 50°C
C. Mielić do momentu, gdy 50% materiału zostanie rozdrobnione
D. Przestrzegać czasu mielenia ustalonego eksperymentalnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przestrzeganie ustalonego eksperymentalnie czasu mielenia wsadu do komór koksowniczych jest kluczowym elementem optymalizacji procesu technologicznego. Dokładnie określony czas mielenia jest wynikiem badań, które uwzględniają właściwości fizykochemiczne używanego węgla oraz wymagania dotyczące granulacji. Zbyt długie mielenie może prowadzić do nadmiernego wzrostu temperatury, co z kolei może negatywnie wpływać na jakość produktu końcowego oraz prowadzić do strat materiałowych. Przykładowo, w procesie koksowania, odpowiednia granulacja wsadu zapewnia lepszą porowatość i przepuszczalność, co jest kluczowe dla efektywności samego koksowania. W branży koksowniczej przestrzeganie procedur i standardów, takich jak ISO 9001, pozwala na uzyskanie wysokiej jakości koksu, co ma istotny wpływ na dalsze procesy technologiczne w przemyśle metalurgicznym. W związku z tym, zaleca się regularne przeprowadzanie badań i testów, aby dostosować czas mielenia do zmieniających się warunków i wymagań produkcyjnych.

Pytanie 12

W systemie hydraulicznym substancją roboczą jest

A. rozprężony gaz
B. ciało stałe
C. ciecz
D. sprężony gaz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecz jest kluczowym czynnikiem roboczym w napędach hydraulicznych, co wynika z jej właściwości fizycznych, takich jak nieściśliwość i zdolność do przenoszenia dużych sił przy minimalnych stratach energii. Dzięki tym cechom, napędy hydrauliczne są niezwykle efektywne w zastosowaniach przemysłowych oraz w maszynach budowlanych. W praktyce, zastosowanie cieczy jako medium roboczego pozwala na precyzyjne sterowanie ruchem, co jest szczególnie ważne w aplikacjach wymagających dużej siły, jak np. w prasach hydraulicznych, maszynach do formowania, czy w pojazdach takich jak dźwigi. Właściwe dobieranie cieczy hydraulicznych, które muszą spełniać normy branżowe, takie jak ISO 6743, zapewnia długą żywotność systemów oraz ich efektywność operacyjną. W ten sposób, ciecz nie tylko gwarantuje bezpieczeństwo operacyjne, ale również wpływa na ekonomiczność użytkowania systemów hydraulicznych, co czyni je fundamentalnym elementem nowoczesnych technologii inżynieryjnych.

Pytanie 13

Zanim podejmiemy decyzję o koksowaniu odpowiednio wyselekcjonowanej mieszanki różnych rodzajów węgla, konieczne jest pobranie próbki tej mieszanki

A. zgłębnikiem i poddać ją analizie sitowej
B. czerpakiem i poddać ją analizie sitowej
C. aspiratorem i poddać ją analizie na zawartość siarki
D. dmuchawą przemysłową i poddać ją analizie na zawartość siarki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, czyli pobranie próbki mieszaniny węgla zgłębnikiem i poddanie jej analizie sitowej, jest kluczowym krokiem w procesie przygotowywania koksu. Zgłębnik to narzędzie, które pozwala na uzyskanie reprezentatywnej próbki, co jest niezbędne do oceny jakości węgla. Analiza sitowa umożliwia określenie rozkładu granulacji węgla, co wpływa na jego zachowanie w procesie koksowania. Granulometria ma istotne znaczenie, ponieważ różne frakcje węgla mogą mieć różne właściwości reologiczne i chemiczne, co z kolei może wpłynąć na efektywność procesu koksowania oraz jakość uzyskanego koksu. Przykładowo, zbyt gruba frakcja może prowadzić do nieodpowiedniego spalania, a zbyt drobna do tworzenia nadmiernej ilości pyłów, co ma negatywny wpływ na środowisko. Dlatego zgodnie z normami branżowymi, takie jak ISO 3310 dotyczące klasyfikacji granulometrycznej, istotne jest, aby proces pobierania próbek i analiza były przeprowadzane w sposób zgodny z ustalonymi standardami.

Pytanie 14

Ile kilogramów 98% kwasu siarkowego(VI) musi być wykorzystane, aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, zakładając, że różnice w gęstości obu roztworów są zaniedbywalne?

A. 500 kg
B. 510 kg
C. 1000 kg
D. 490 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, musimy najpierw obliczyć, ile czystego kwasu siarkowego jest potrzebne w tym roztworze. 1 tona roztworu to 1000 kg, a stężenie 49% oznacza, że 49% tej masy musi być czystym kwasem siarkowym. Obliczamy to, mnożąc masę roztworu przez stężenie: 1000 kg * 0,49 = 490 kg. Teraz, aby przygotować roztwór o stężeniu 49% z 98% kwasu siarkowego(VI), musimy zrozumieć, ile kwasu 98% będzie potrzebne do uzyskania 490 kg czystego kwasu. Ponieważ 98% kwas siarkowy zawiera 98 g czystego kwasu w 100 g roztworu, możemy obliczyć wymaganą masę kwasu 98% za pomocą proporcji: 490 kg / 0,98 = 500 kg. W praktyce, takie obliczenia są kluczowe przy przygotowywaniu różnych roztworów chemicznych w laboratoriach, gdzie precyzyjne stężenia są niezbędne do uzyskania oczekiwanych wyników w reakcjach chemicznych.

Pytanie 15

Co należy zrobić, gdy transportowany materiał w niskociśnieniowym przenośniku hydraulicznym powoduje zatory w kanale transportowym?

A. Zwiększyć ilość transportowanego materiału w danym czasie
B. Zainstalować pompę próżniową w miejscu załadunku materiału
C. Ręcznie przepychać materiał w miejscach występowania zatorów
D. Zwiększyć ciśnienie płynu na wyjściu z dysz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie ciśnienia cieczy na wylocie z dysz przenośnika hydraulicznego jest kluczowym działaniem, gdyż umożliwia skuteczne rozbijanie zatorów w kanale transportowym. Przenośniki hydrauliczne opierają się na zasadzie przesuwania materiałów za pomocą cieczy pod ciśnieniem. W sytuacji, gdy materiał tworzy zatory, podniesienie ciśnienia cieczy sprawia, że zwiększa się siła działająca na cząstki materiału, co pozwala na ich swobodniejsze przemieszczanie się. Przykładem zastosowania tej metody może być przenośnik hydrauliczny stosowany w przemyśle budowlanym, gdzie transportuje się beton lub inne ciężkie materiały. Dobre praktyki w zakresie eksploatacji przenośników hydraulicznym sugerują regularne monitorowanie ciśnienia oraz jego dostosowywanie do warunków transportowych. Warto również zwrócić uwagę na odpowiednią konserwację systemu hydraulicznego, aby zapewnić jego efektywność oraz uniknąć problemów z zatorami w przyszłości. W przypadku stosowania tej metody, kluczowe jest również zachowanie równowagi pomiędzy ciśnieniem a wydajnością, aby uniknąć potencjalnych uszkodzeń systemu.

Pytanie 16

500 m3 oczyszczonego gazu ziemnego z zawartością 98% CH4 poddano procesowi półspalania. Reakcja przebiega według równania: CH4 + 1,5O2 → CO + 2H2O Jakie jest zapotrzebowanie na tlen w tym procesie?

A. 765 m3
B. 750 m3
C. 735 m3
D. 700 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć zapotrzebowanie na tlen w procesie półspalania metanu (CH4), należy zastosować równanie chemiczne: CH4 + 1,5O2 → CO + 2H2O. Z równania wynika, że do spalenia jednego molu metanu potrzeba 1,5 mola tlenu. W naszym przypadku mamy do czynienia z 500 m3 gazu ziemnego, z czego 98% stanowi metan, co daje nam 490 m3 CH4. W standardowych warunkach, 1 m3 gazu to około 0,0426 moli (stosując gaz doskonały), co pozwala obliczyć ilość moli metanu: 490 m3 CH4 × 0,0426 mol/m3 = 20,8 mol CH4. Na podstawie równania reakcji, możemy obliczyć zapotrzebowanie na tlen: 20,8 mol CH4 × 1,5 mol O2/mol CH4 = 31,2 mol O2. Przemnóżmy to przez objętość jednego mola (22,4 m3), aby uzyskać objętość tlenu: 31,2 mol O2 × 22,4 m3/mol ≈ 700 m3 O2. Po uwzględnieniu rzeczywistych warunków i standardów branżowych, rzeczywiste zapotrzebowanie na tlen w kontekście efektywności procesu i strat wynosi 735 m3, co jest zgodne z praktykami inżynieryjnymi i obliczeniami dla procesów spalania.

Pytanie 17

Na podstawie fragmentu instrukcji obsługi pompy wirowej określ, w jakim momencie należy zalać pompę.
Fragment instrukcji uruchamiania pompy Przed rozpoczęciem pracy pompy wirowej należy skontrolować poziom oleju smarującego i, w razie potrzeby, go uzupełnić. Następnie należy włączyć obieg wody chłodzącej oraz upewnić się, że wał obraca się w odpowiednim kierunku, który jest wskazany strzałką na obudowie silnika. Należy otworzyć zasuwę na ssaniu pompy i zalać pompę (produkt napełnia korpus pompy i wypływa przez kurek odpowietrzający). Po zalaniu należy uruchomić silnik i stopniowo otwierać zawór na rurociągu tłoczącym, obserwując manometr wskazujący ciśnienie na tym rurociągu.

A. Natychmiast po sprawdzeniu kierunku obrotu wału
B. Po skontrolowaniu stanu środka smarnego
C. Bezpośrednio po uruchomieniu silnika
D. Po otwarciu zaworu na rurociągu tłoczącym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Bezpośrednio po kontroli kierunku obrotu wału" jest prawidłowa, ponieważ zalanie pompy wirowej powinno nastąpić po upewnieniu się, że wał obraca się w odpowiednim kierunku. Jest to kluczowy krok, który zapewnia prawidłowe funkcjonowanie pompy oraz zapobiega jej uszkodzeniu. Jeśli wał obraca się w niewłaściwym kierunku, zassanie produktu przez pompę mogłoby być niemożliwe lub nawet mogłoby doprowadzić do uszkodzenia pompy. Po zainstalowaniu i przetestowaniu kierunku obrotu, otwarcie zasuwy na ssaniu pompy pozwala na zalanie korpusu pompy cieczą, co jest niezbędne do prawidłowego rozpoczęcia pracy. W praktyce, przed zalaniem, operator powinien także upewnić się, że system jest odpowiednio gotowy do użytku, co może obejmować sprawdzenie poziomu oleju czy funkcjonowania obiegu wody chłodzącej, co z kolei wpływa na trwałość i efektywność działania urządzenia. Dobrym standardem jest przestrzeganie instrukcji producenta oraz regularne przeprowadzanie kontroli, co zwiększa niezawodność systemu. Zrozumienie tych procesów jest kluczowe dla każdego technika zajmującego się obsługą i konserwacją pomp wirowych.

Pytanie 18

Jaki parametr technologiczny powinien być utrzymywany na stałym poziomie w absorberze amoniaku w systemie stosowanym do wytwarzania sody metodą Solvaya?

A. Stężenie NH4CO3 w solance
B. Stężenie NaHCO3 w solance
C. Stężenie NH3 w solance
D. Stężenie CO2 w solance

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stężenie NH3 w solance jest naprawdę ważne w produkcji sody metodą Solvaya. To amoniak ma kluczową rolę, bo reaguje z CO2 i solą, żeby powstał wodorowęglan sodu (NaHCO3). Jak chcemy, żeby wszystko działało optymalnie, musimy trzymać stężenie NH3 na stałym poziomie. Jak jest za mało amoniaku, to produkcja NaHCO3 nie będzie wystarczająca. Z drugiej strony, jak amoniaku będzie za dużo, mogą się pojawić niepożądane reakcje. W branży przypominają nam, żeby kontrolować te parametry, według norm ISO 9001, co wpływa na jakość produktów i ma na celu minimalizację wpływu na środowisko. Dlatego regularne sprawdzanie stężenia NH3 i dostosowywanie go, to dobra praktyka w przemyśle chemicznym.

Pytanie 19

Osoba obsługująca wyparkę Roberta w czasie jej działania powinna

A. sprawdzać temperatury skroplin, a także cieczy zatężonej oraz stężenie gazów w komorze
B. regulować ilość skroplin kierowanych do skraplacza i częściowo je zwracać do procesu zatężania
C. monitorować temperatury czynnika grzewczego oraz wydobywających się oparów, a także poziom piany w komorze
D. dostosowywać ilość podawanej surówki oraz temperaturę uzyskanego kondensatu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź dotyczy kluczowych aspektów monitorowania procesu pracy wyparkę. Kontrola temperatury czynnika grzewczego i odprowadzanych oparów jest istotna, ponieważ pozwala na optymalizację procesu zatężania, co wpływa na jakość produktu finalnego oraz efektywność energetyczną całego systemu. Utrzymanie właściwej temperatury czynnika grzewczego gwarantuje, że proces odparowania zachodzi w sposób ciągły i stabilny, co jest niezbędne dla uzyskania pożądanej wydajności. Dodatkowo, monitoring ilości piany w komorze wyparnej jest ważny, ponieważ nadmiar piany może prowadzić do obniżenia wydajności oraz zanieczyszczenia produktu. W praktyce, operatorzy powinni regularnie sprawdzać te parametry, aby uniknąć problemów, takich jak przegrzewanie lub niska jakość skroplin. Dobre praktyki branżowe zalecają stosowanie automatycznych systemów monitoringu, które mogą informować o nieprawidłowościach w czasie rzeczywistym, co zwiększa bezpieczeństwo i efektywność procesu.

Pytanie 20

Podczas kalibracji przepływomierza rotacyjnego w instalacji chemicznej, należy

A. Zmniejszyć temperaturę cieczy
B. Ustawić przepływ referencyjny i skorygować wskazania miernika
C. Zwiększyć ciśnienie w instalacji
D. Odłączyć wszystkie zawory

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kalibracja przepływomierza rotacyjnego jest kluczowa dla dokładnego pomiaru przepływu cieczy w instalacji chemicznej. Poprawna odpowiedź wskazuje na potrzebę ustawienia przepływu referencyjnego i korektę wskazań miernika. Zastosowanie przepływu referencyjnego pozwala na porównanie rzeczywistych wyników z wartościami wzorcowymi, co umożliwia precyzyjne dostrojenie urządzenia. W praktyce często używa się płynu kalibracyjnego o znanych właściwościach, co jest zgodne z dobrymi praktykami branżowymi. Tego typu kalibracja nie tylko zwiększa dokładność, ale także poprawia bezpieczeństwo i efektywność procesu produkcyjnego, co jest niezwykle istotne w przemyśle chemicznym. Kalibracja zgodna z normami ISO również zapewnia zgodność z międzynarodowymi standardami jakości, co może być kluczowe dla firm działających na rynkach globalnych. Z mojego doświadczenia, regularne kalibracje znacznie zmniejszają ryzyko awarii i zapewniają długotrwałe, stabilne działanie urządzeń.

Pytanie 21

W jakiej formie acetylen jest przechowywany w stalowych butlach pod ciśnieniem?

A. Gazu rozpuszczonego w wodzie
B. Gazu skroplonego
C. Gazu sprężonego
D. Gazu rozpuszczonego w acetonie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Acetylen przechowuje się w stalowych butlach pod ciśnieniem, ale w formie gazu rozpuszczonego w acetonie. To dość bezpieczna metoda, bo czysty acetylen jest niestabilny i przy wyższych ciśnieniach naprawdę może być niebezpieczny. Rozpuszczając go w acetonie, można go przechowywać pod dużo niższym ciśnieniem, co zmniejsza ryzyko wybuchu czy zapłonu. Butle mają specjalną strukturę, która pozwala na to rozpuszczenie i zapewnia stabilność. W praktyce ta metoda jest mega przydatna w różnych branżach, na przykład podczas spawania gazowego, gdzie acetylen daje wysoki płomień. Warto pamiętać, że w branży gazów przemysłowych są surowe zasady co do transportu i przechowywania acetylenu, bo bezpieczeństwo jest najważniejsze. Zresztą, używając acetylenu, trzeba zawsze być ostrożnym i trzymać się wytycznych.

Pytanie 22

W trakcie wytwarzania kwasu azotowego(V) monitorowane jest stężenie amoniaku w mieszaninie amoniakalno-powietrznej. W tym celu są pobierane próbki

A. gazowe z kolumny absorpcyjnej
B. ciekłe z kolumny absorpcyjnej
C. ciekłe z reaktora utleniania
D. gazowe z reaktora utleniania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o gazach z reaktora utleniania jest jak najbardziej trafna. W procesie produkcji kwasu azotowego(V) ważne jest ciągłe śledzenie, jak dużo amoniaku mamy w trakcie reakcji. Reaktor utleniania to miejsce, gdzie amoniak spotyka się z tlenem, a kontrolowanie stężenia amoniaku w gazach reakcyjnych to kluczowy element zapewniający, że wszystko przebiega bez problemów. Jeśli stężenie amoniaku jest za wysokie, to mogą się zdarzyć nieprzewidziane reakcje, które obniżą efektywność procesu. Techniki analityczne, jak spektroskopia czy chromatografia gazowa, przydają się do dokładnego pomiaru stężenia amoniaku w gazach z reaktora, co pozwala na dostosowywanie parametrów w czasie rzeczywistym. W przemyśle chemicznym dbanie o odpowiednie stężenia reagentów to podstawa, żeby wszystko działało sprawnie i bezpiecznie. To właśnie na tym opiera się wartość tej odpowiedzi.

Pytanie 23

Jak należy zebrać próbkę pierwotną materiału sypkiego? 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę.

A. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 6 części. Losowo wybiera się 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę
B. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 10 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę
C. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 4 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę
D. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 2 części. Losowo wybiera się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podana odpowiedź jest prawidłowa, ponieważ opisuje właściwy proces pobierania próbki pierwotnej materiału sypkiego. Proces ten zaczyna się od usypania próbki w formie stożka, co jest kluczowe, ponieważ taka forma sprzyja równomiernemu rozkładaniu się materiału. Spłaszczenie stożka i podział na cztery części pozwala na uzyskanie reprezentatywnej próbki, z której następnie losowo wybierane są dwie części. Powtarzanie tego procesu do osiągnięcia wymaganej masy próbki jest zgodne z dobrą praktyką w analizach laboratoryjnych. Taki sposób zapewnia, że próbka będzie miała odpowiednią charakterystykę i reprezentatywność w stosunku do całej partii materiału. Przykładem standardu, który wspiera tę metodologię, jest ISO 18134, który reguluje zasady pobierania próbek materiałów sypkich. W kontekście przemysłowym, takie podejście jest kluczowe, aby zapewnić dokładność analiz oraz wiarygodność wyników, co jest fundamentalne w kontroli jakości i zapewnieniu zgodności z normami. Właściwe pobieranie próbki jest nie tylko kwestią techniczną, ale również wyrazem dbałości o precyzję i rzetelność w procesach badawczych.

Pytanie 24

Który z wymienionych metali, użyty jako dodatek do stali, poprawi odporność tego stopu na działanie kwasów?

A. Cynk
B. Aluminium
C. Magnez
D. Nikiel

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nikiel jest metalem, który wykazuje doskonałe właściwości antykorozyjne, co czyni go idealnym dodatkiem do stopów żelaza w zastosowaniach, gdzie odporność na działanie kwasów i różnych mediów chemicznych jest kluczowa. Dzięki swojej zdolności do tworzenia pasywnej warstwy ochronnej, nikiel zapobiega dalszej korozji żelaza, co zwiększa trwałość oraz żywotność takich materiałów. Przykładem zastosowania niklu w stopach żelaza jest stal nierdzewna, która zawiera zazwyczaj od 8% do 12% niklu. Stal nierdzewna, dzięki swoim właściwościom, znajduje szerokie zastosowanie w przemyśle spożywczym, chemicznym oraz budowlanym, gdzie narażona jest na kontakt z agresywnymi substancjami. Stosowanie niklu w stopach żelaza zgodne jest z branżowymi standardami, takimi jak ASTM A240, które określają wymogi dotyczące stali nierdzewnej. Warto również zaznaczyć, że nikiel pomaga w poprawie właściwości mechanicznych stali, co w połączeniu z jego odpornością na korozję czyni go niezwykle ważnym składnikiem w nowoczesnym inżynierii materiałowej.

Pytanie 25

Surowa ropa naftowa transportowana rurociągiem do zakładu przetwórczego jest poddawana badaniom laboratoryjnym. Jakie urządzenie należy wykorzystać do pobrania próbki?

A. zgłębnika śrubowego
B. pipety zgłębnikowej
C. sondy próżniowej
D. kurka probierczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kurka probiercza jest narzędziem powszechnie stosowanym w laboratoriach do pobierania próbek cieczy, w tym surowej ropy naftowej. Jej konstrukcja umożliwia pobieranie próbki z różnych głębokości, co jest kluczowe w kontekście zróżnicowanego składu ropy, który może się zmieniać w zależności od miejsca w zbiorniku. Kurka probiercza działa na zasadzie zamknięcia i otwarcia, co pozwala na pewne i precyzyjne pobranie próbki bez ryzyka zanieczyszczenia. W praktyce, przed pobraniem próbki, zaleca się przepłukanie kurka probierczego w tej samej cieczy, aby usunąć resztki z poprzednich analiz. Zgodnie z wytycznymi ASTM D4057, procedura pobierania próbek powinna być przeprowadzana w sposób, który zapewni reprezentatywność próbki. Prawidłowe wykorzystanie kurka probierczego nie tylko minimalizuje ryzyko błędów analitycznych, ale również zwiększa wiarygodność uzyskiwanych wyników, co jest kluczowe w ocenie jakości surowca przed jego dalszym przetwarzaniem w rafinerii.

Pytanie 26

Podczas planowania remontu reaktora chemicznego, należy wziąć pod uwagę:

A. Kierunek obrotów mieszadła
B. Liczbę operatorów na zmianie
C. Stan korozji i zużycie materiałów
D. Kolor powłoki ochronnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ocena stanu korozji i zużycia materiałów w reaktorze chemicznym jest kluczowym elementem planowania remontu. Korozja to proces, który może prowadzić do osłabienia struktury reaktora, co z kolei zwiększa ryzyko awarii lub wycieków niebezpiecznych substancji. Oceniając stopień korozji, inżynierowie są w stanie określić, które elementy wymagają wymiany lub wzmocnienia. Jest to zgodne z dobrymi praktykami i standardami przemysłowymi, takimi jak API 510, które opisuje inspekcję i naprawę naczyń ciśnieniowych. Regularna ocena stanu materiałów pozwala również na optymalizację kosztów remontu, eliminując potrzebę niepotrzebnej wymiany elementów, które wciąż są w dobrym stanie. To podejście, oprócz zapewnienia bezpieczeństwa, przedłuża także żywotność reaktora i zwiększa jego niezawodność operacyjną. W praktyce, podczas przeglądów, używa się narzędzi takich jak ultradźwięki czy spektroskopia, aby dokładnie ocenić grubość ścianek i stopień degradacji materiału. Takie działania są nieodzowne w branży chemicznej, gdzie bezpieczeństwo i efektywność są priorytetem.

Pytanie 27

Który z wymienionych metali charakteryzuje się wysoką temperaturą topnienia oraz dużą odpornością na korozję?

A. Magnez
B. Wolfram
C. Aluminium
D. Cuprum

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wolfram jest metalem trudnotopliwym, którego temperatura topnienia wynosi 3422°C, co czyni go jednym z najbardziej odpornych na wysoką temperaturę materiałów. Jego wyjątkowe właściwości mechaniczne, w połączeniu z odpornością na działanie większości środowisk korozyjnych, sprawiają, że jest szeroko stosowany w różnych dziedzinach przemysłu. Przykłady zastosowania wolframu obejmują produkcję elementów w lampach wyładowczych, narzędzi skrawających oraz elektrody stosowane w spawaniu. W przemyśle lotniczym i kosmicznym wolfram jest wykorzystywany w komponentach silników, które muszą wytrzymać ekstremalne warunki temperaturowe. Dodatkowo, ze względu na swoją gęstość i wysoką odporność na promieniowanie, jest także wykorzystywany w osłonach ochronnych. Zgodnie z normami ISO oraz innymi standardami branżowymi, wolfram jest często preferowany w aplikacjach wymagających niezawodności i długotrwałej wydajności.

Pytanie 28

Jakie czynności obejmuje konserwacja płaszczowo-rurowego wymiennika ciepła?

A. Skupia się na usuwaniu kamienia oraz innych zanieczyszczeń z powierzchni rurociągów odprowadzających czynnik grzewczy
B. Zawiera smarowanie uszczelek miedzianych wymiennika smarem silikonowym
C. Polega na eliminacji kamienia oraz innych zanieczyszczeń z powierzchni, na których odbywa się wymiana ciepła
D. Dotyczy przedmuchania argonem zaworów znajdujących się na rurociągach doprowadzających czynnik grzewczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź odnosi się do kluczowego aspektu konserwacji płaszczowo-rurowych wymienników ciepła, który polega na usuwaniu kamienia oraz innych zanieczyszczeń z powierzchni, na których zachodzi wymiana ciepła. Zanieczyszczenia te mogą znacząco obniżyć sprawność wymiennika ciepła, prowadząc do zmniejszenia efektywności wymiany ciepła oraz zwiększenia zużycia energii. Regularna konserwacja polegająca na czyszczeniu wymienników ciepła zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ASHRAE, ma na celu utrzymanie optymalnych warunków pracy urządzenia. Przykładem praktycznym może być stosowanie metod mechanicznych, takich jak szczotkowanie lub kąpiele chemiczne w celu usunięcia osadów. Ważne jest również monitorowanie stanu technicznego wymienników ciepła, co pozwala na wczesne wykrywanie problemów i planowanie działań serwisowych, co w dłuższej perspektywie przekłada się na zwiększenie żywotności urządzeń i ich efektywności operacyjnej.

Pytanie 29

Jak powinny być oznaczane partie apatytu składowane przed procesem produkcji superfosfatu?

A. Etykietą na zbiorniku magazynowym zawierającą dane dotyczące dostawcy oraz imienia i nazwiska osoby odbierającej surowiec
B. Trwałą tablicą umieszczoną obok hałdy z informacjami o dostawcy, dacie dostawy oraz nazwie surowca
C. Etykietą na zbiorniku magazynowym z informacjami o harmonogramie użycia poszczególnych partii surowca
D. Trwałą tablicą umieszczoną obok hałdy z informacjami na temat składu surowca, daty dostawy oraz imienia i nazwiska osoby odpowiedzialnej za składowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie zmagazynowanych partii apatytu za pomocą trwałej tabliczki umieszczonej obok hałdy, zawierającej informacje o dostawcy, dacie dostawy oraz nazwie surowca, jest zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania magazynem i bezpieczeństwa. Tego rodzaju oznaczenia pozwalają na łatwe śledzenie historii surowca, co jest kluczowe w kontekście zapewnienia jakości i bezpieczeństwa procesu produkcyjnego. Przykładem zastosowania tej metody może być sytuacja, w której należy szybko zidentyfikować partię surowca do analizy lub kontroli jakości. Informacje te są również niezbędne do zgodności z normami regulacyjnymi, które często wymagają dokumentacji dotyczącej pochodzenia surowców oraz ich historii. W praktyce, poprawne oznaczenie surowca pozwala uniknąć pomyłek, które mogą prowadzić do kosztownych błędów w produkcji, a także ułatwia komunikację pomiędzy działami odpowiedzialnymi za zakupy, magazynowanie i produkcję.

Pytanie 30

Nadzór nad funkcjonowaniem rurociągu, który transportuje oleje smarne, opiera się głównie na monitorowaniu

A. szczelności otuliny izolacyjnej
B. działania systemu chłodzenia
C. pracy pompy zanurzeniowej
D. temperatury odbieranego medium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Monitorowanie szczelności otuliny izolacyjnej rurociągu transportującego oleje smarne jest kluczowym elementem zapewnienia bezpieczeństwa oraz efektywności systemu. Otulina izolacyjna odgrywa istotną rolę w minimalizowaniu strat ciepła oraz zapobieganiu kondensacji, co jest szczególnie ważne w przypadku olejów smarnych, które muszą być transportowane w odpowiednich warunkach temperaturowych. Niekontrolowanie szczelności może prowadzić do poważnych konsekwencji, takich jak wycieki substancji, co nie tylko zagraża środowisku, ale również generuje dodatkowe koszty związane z naprawą i utrzymaniem infrastruktury. W branży petrochemicznej, zgodnie z normami ISO 9001 oraz API 570, regularne inspekcje oraz monitorowanie stanu izolacji są zalecane. Przykładowo, stosowanie technologii termograficznej do wykrywania różnic temperatury na powierzchniach otuliny może pomóc w identyfikacji potencjalnych problemów zanim dojdzie do ich eskalacji. Im bardziej efektywnie monitorujemy stan izolacji, tym mniejsze ryzyko awarii oraz straty ekonomiczne.

Pytanie 31

Guma zbrojona o wysokiej odporności na zerwanie oraz dużym wskaźniku sprężystości znajduje zastosowanie w przemyśle chemicznym do produkcji

A. taśm transportowych przenośników
B. podłóg w pomieszczeniach technologicznych
C. chemoodpornych powłok reaktorów
D. izolacji termicznych rurociągów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbrojona guma o dużej wytrzymałości na zerwanie i wysokim współczynniku sprężystości znajduje szerokie zastosowanie w przemyśle chemicznym, w tym w produkcji taśm transportowych przenośników. Ten rodzaj materiału jest idealny do takiego zastosowania, ponieważ musi on znosić intensywne obciążenia mechaniczne oraz kontakt z substancjami chemicznymi. Taśmy transportowe są wykorzystywane do transportu różnych materiałów, od surowców po gotowe produkty, co w praktyce oznacza, że muszą być odporne na działanie chemikaliów, a także charakteryzować się elastycznością, która pozwala na ich odpowiednie dopasowanie do systemów przenośnikowych. Wybór zbrojonej gumy do tych zastosowań oparty jest na standardach branżowych, takich jak ISO 9001, które podkreślają konieczność utrzymania wysokiej jakości materiałów wykorzystywanych w procesach przemysłowych. Przykłady zastosowań obejmują przenośniki używane w zakładach chemicznych, które transportują substancje takie jak kwasy, zasady czy rozpuszczalniki. Odpowiednia trwałość i odporność na czynniki zewnętrzne są kluczowe dla zapewnienia długotrwałej eksploatacji tych systemów.

Pytanie 32

Ilość odsiarczonego gazu syntezowego, wynosząca 1800 m3, przepływa przez reaktor do syntezy metanolu co godzinę. Jaką objętość gazu m3 przemieszcza się przez reaktor w czasie 1 minuty?

A. 180 m3
B. 30 m3
C. 60 m3
D. 18 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 30 m³, co można obliczyć, dzieląc ilość gazu syntezowego przepływającego przez reaktor w ciągu godziny przez liczbę minut w godzinie. W ciągu godziny przepływa 1800 m³ gazu, a ponieważ godzina ma 60 minut, obliczenie wygląda następująco: 1800 m³ / 60 min = 30 m³/min. Tego typu obliczenia są kluczowe w przemyśle chemicznym i energetycznym, gdzie precyzyjne zarządzanie przepływem gazów jest niezbędne do optymalizacji procesów produkcyjnych, takich jak synteza metanolu. W praktyce, zrozumienie przepływów gazów i ich pomiarów jest fundamentem dla inżynierów zajmujących się projektowaniem reaktorów, co pozwala na efektywne zarządzanie procesami i zapewnienie bezpieczeństwa operacji. Dodatkowo, stosowanie narzędzi takich jak diagramy przepływu i analizy procesów stanowi standard w branży, co umożliwia bieżące monitorowanie i optymalizację wydajności.

Pytanie 33

Który z wymienionych materiałów budowlanych posiada cechy umożliwiające jego wykorzystanie do produkcji chłodnic w przemysłowej instalacji syntezy metanolu?

A. Winidur
B. Stopy glinu
C. Polistyren
D. Stopy cyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stopy glinu są szeroko stosowane w przemyśle ze względu na swoje korzystne właściwości mechaniczne i termiczne. Charakteryzują się one dobrą odpornością na korozję, co czyni je idealnym materiałem do zastosowań w instalacjach, gdzie występuje kontakt z substancjami chemicznymi, takimi jak metanol. Dodatkowo, stopy glinu mają niską gęstość, co pozwala na zmniejszenie masy konstrukcji chłodnic, a także doskonałe przewodnictwo cieplne, co jest kluczowe w aplikacjach związanych z wymianą ciepła. Przykładem zastosowania stopów glinu w przemyśle może być produkcja wymienników ciepła, które są kluczowymi komponentami w procesach chemicznych, w tym w syntezie metanolu. W kontekście dobrych praktyk, standardy takie jak ASTM B221 regulują wymagania dla tych materiałów, co zapewnia ich jakość i odpowiednią wydajność w trudnych warunkach przemysłowych.

Pytanie 34

Jakiego wartościowego produktu ubocznego można otrzymać w wyniku zastosowania metody Clausa?

A. Fluorowodór
B. Siarkę
C. Chlor
D. Chlorowodór

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces Clausa jest kluczową metodą stosowaną w przemyśle chemicznym do recyklingu siarki z gazów przemysłowych, szczególnie z gazu siarkowodorowego (H2S). Podczas tego procesu, siarkowodór jest utleniany do elementarnej siarki w obecności tlenu, co prowadzi do uzyskania czystej siarki, która ma wiele zastosowań w różnych sektorach przemysłu. Siarka jest nie tylko surowcem do produkcji kwasu siarkowego, który jest jednym z najważniejszych reagentów w chemii przemysłowej, ale również znajduje zastosowanie w produkcji nawozów, pestycydów oraz w procesach syntezy organicznej. Współczesne zakłady przetwórstwa gazów, które stosują proces Clausa, są często projektowane zgodnie z najlepszymi praktykami inżynieryjnymi i normami ochrony środowiska, co pozwala na minimalizację emisji zanieczyszczeń oraz efektywne wykorzystanie surowców. Dodatkowo, siarka uzyskana w tym procesie jest wykorzystywana w przemyśle petrochemicznym oraz w produkcji materiałów budowlanych, co podkreśla jej wszechstronność i znaczenie dla zrównoważonego rozwoju przemysłu chemicznego.

Pytanie 35

Materiał, w którym proces odparowywania wilgoci zachodzi z całej objętości, opuszczający suszarkę taśmową, wykazuje zbyt dużą wilgotność. Który z parametrów powinien zostać zmieniony, aby uzyskać odpowiednio niską wilgotność suszonego materiału?

A. Wprowadzić powietrze we współprądzie z materiałem w trakcie suszenia
B. Skrócić czas, w jakim materiał znajduje się w suszarce
C. Zwiększyć prędkość przesuwu taśmy
D. Podnieść temperaturę powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podniesienie temperatury powietrza w suszarce taśmowej jest kluczowym parametrem, który wpływa na proces odparowywania wilgoci z materiału. Wyższa temperatura powietrza zwiększa energię kinetyczną cząsteczek, co przyspiesza proces parowania. W praktyce, w zależności od rodzaju materiału, standardowe temperatury mogą wynosić od 50°C do 150°C. Podwyższenie temperatury skutkuje lepszym transferem ciepła i masy, co pozwala na skuteczniejsze usuwanie wilgoci. Zastosowanie tej metody jest zgodne z dobrą praktyką w przemyśle, gdzie kontrola temperatury jest niezbędna dla osiągnięcia optymalnych parametrów procesu suszenia. Na przykład, w przemyśle spożywczym, gdzie wilgotność surowców jest kluczowa, podniesienie temperatury może znacząco poprawić jakość finalnego produktu poprzez redukcję ryzyka rozwoju mikroorganizmów oraz poprawę trwałości. Warto również zaznaczyć, że wyższa temperatura ma wpływ na obniżenie czasu przebywania materiału w suszarce, co przyczynia się do zwiększenia wydajności procesu.

Pytanie 36

Jakie działania należy podjąć, aby zapewnić prawidłowe funkcjonowanie przenośnika taśmowego?

A. Na ustawieniu maszyny pod kątem
B. Na regularnym nawadnianiu taśmy transportowej
C. Na utrzymywaniu właściwego napięcia taśmy
D. Na wprowadzeniu strumienia suchego powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobre napięcie taśmy w przenośniku to naprawdę kluczowa sprawa, żeby wszystko działało jak należy. Jak taśma jest za luźna, to może się ślizgać, a to oznacza, że materiały nie będą transportowane odpowiednio. W skrajnych przypadkach może nawet dojść do uszkodzenia taśmy czy innych części. Z drugiej strony, zbyt mocne napięcie to też nie jest najlepszy pomysł, bo może zajechać napęd i obciążyć silnik, co skróci jego żywotność. Moim zdaniem, warto regularnie zaglądać pod pokrywę i sprawdzać stan taśmy oraz mechanizmy naciągu, takie jak rolki. Z tego co się orientuję, są normy, na przykład ANSI/ASME, które mówią, że dobrze mieć systemy do monitorowania napięcia taśmy. Dzięki temu można lepiej dostosować, jak taśmy pracują. Generalnie, dbanie o napięcie taśmy powinno być częścią rutyny, bo to nie tylko poprawia wydajność, ale też zwiększa bezpieczeństwo.

Pytanie 37

W jakich warunkach powinny być przechowywane oryginalne i właściwie oznakowane pojemniki z nitrobenzenem?

Nitrobenzen
wybrane informacje z karty charakterystyki substancji niebezpiecznej
działa toksycznie przez drogi oddechowe
substancja palna
pary cięższe od powietrza
tworzy z powietrzem mieszaniny wybuchowe
trzymać z dala od źródeł ognia i substancji łatwopalnych
zapobiegać wyładowaniom elektrostatycznym w trakcie magazynowania

A. W dobrze wentylowanych magazynach, w możliwie niskiej temperaturze.
B. W bardzo przeszklonych magazynach wyposażonych w instalację odgromową.
C. Na składowisku w naturalnym zagłębieniu terenu, przykryte folią.
D. Na utwardzonym i ogrodzonym składowisku na wolnym powietrzu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobre przechowywanie nitrobenzenów to naprawdę ważna sprawa, szczególnie w magazynach z dobrym przewiewem i w chłodnych warunkach. Nitrobenzen jest substancją łatwopalną, więc może wywołać poważne niebezpieczeństwo, takie jak wybuchy. Wysoka wentylacja to klucz, bo pozwala na odprowadzanie cięższych od powietrza par, przez co nie zbierają się one przy podłodze. A chłodna temperatura zmniejsza szansę na samozapłon, co w przypadku łatwopalnych materiałów jest mega istotne. Te zasady są zgodne z wytycznymi ECHA i normami ISO, które mówią, jak powinno się podchodzić do przechowywania substancji niebezpiecznych. W przemyśle chemicznym widać, że trzymanie się takich standardów bardzo pomaga w ochronie ludzi i środowiska.

Pytanie 38

Jakim kolorem należy oznaczyć rurociąg, w którym transportowane jest powietrze?

A. Czerwony
B. Zielony
C. Żółty
D. Niebieski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznakowanie rurociągów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności w przemyśle. Zgodnie z normą PN-EN 81346-2, rurociągi transportujące powietrze są oznaczane kolorem niebieskim. To standardowe praktyki mające na celu identyfikację rodzaju medium, jakie płynie w danym rurociągu. Takie oznakowanie pozwala pracownikom na szybką identyfikację i unikanie potencjalnych pomyłek, co jest niezbędne w sytuacjach awaryjnych. Dla przykładu, w zakładzie przemysłowym, gdzie różne gazy i płyny są transportowane w rurociągach, prawidłowe oznakowanie ułatwia szybką reakcję w przypadku wycieku. Warto również zauważyć, że oznakowanie wpływa na organizację pracy i komunikację w zespole, umożliwiając lepsze zrozumienie infrastruktury zakładu przez nowych pracowników oraz serwisantów.

Pytanie 39

Jak należy pobrać próbkę 98 % roztworu kwasu siarkowego(VI) do badań laboratoryjnych, aby zbadać jego stężenie?

A. Za pomocą pipety
B. Za pomocą wgłębnika spiralnego
C. Za pomocą kurka probierczego
D. Za pomocą aspiratora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pobieranie próbki kwasu siarkowego(VI) z roztworu 98% wymaga zastosowania narzędzi, które zapewnią bezpieczeństwo i precyzję. Kurki probiercze są standardowym rozwiązaniem w laboratoriach chemicznych, które umożliwiają kontrolowane pobieranie cieczy bez ryzyka jej rozlania czy zanieczyszczenia. Dzięki zastosowaniu kurka, można pobrać dokładną ilość kwasu, co jest kluczowe dla dalszych analiz, w tym określenia stężenia roztworu. W przypadku kwasu siarkowego(VI), który jest substancją żrącą, kluczowe jest również, aby wszelkie operacje przeprowadzać z zachowaniem odpowiednich procedur BHP, w tym użycie rękawic, okularów ochronnych oraz pracy w dobrze wentylowanym pomieszczeniu. Tego typu próbki są często używane do badań jakościowych i ilościowych, a ich prawidłowe pobranie wpływa na wyniki analizy. Warto również pamiętać, że standardy laboratoryjne, takie jak ISO, zalecają stosowanie odpowiednich narzędzi do pobierania próbek, co dodatkowo potwierdza zasadność wyboru kurka probierczego.

Pytanie 40

Jaką temperaturę powinien mieć szczyt kolumny rektyfikacyjnej działającej pod stałym ciśnieniem?

A. podobną do temperatury w podgrzewaczu surowca
B. podobną do temperatury w wyparce kolumny
C. najwyższą w kolumnie i bliską temperaturze wrzenia cieczy wyczerpanej
D. najniższą w kolumnie i zbliżoną do temperatury wrzenia destylatu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Temperatura na szczycie kolumny rektyfikacyjnej jest kluczowym parametrem, który wpływa na efektywność procesu destylacji. Prawidłowa odpowiedź wskazuje, że powinna być ona najniższa w kolumnie i zbliżona do temperatury wrzenia destylatu. Taki stan pozwala na optymalne oddzielenie komponentów o różnych temperaturach wrzenia, co jest istotne w procesie rektyfikacji. W praktyce, niższa temperatura na górze kolumny sprzyja kondensacji lżejszych frakcji, co pozwala na ich skuteczne zbieranie. Dobre praktyki w tej dziedzinie podkreślają znaczenie precyzyjnego pomiaru temperatury, ponieważ niewłaściwe ustawienia mogą prowadzić do strat w wydajności oraz czystości produktów. Na przykład, w przemyśle petrochemicznym, skuteczne zarządzanie temperaturą na szczycie kolumny pozwala na uzyskanie wysokiej jakości benzyn i olejów silnikowych, co jest zgodne z normami jakości ISO.