Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 8 kwietnia 2025 18:54
  • Data zakończenia: 8 kwietnia 2025 19:14

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdy zostanie wykryte uszkodzenie przegubu kulowego półosi napędowej, co należy zrobić?

A. zastosować galwanizację
B. wymienić go na nowy
C. zastosować napawanie
D. poddąć go nawęglaniu
Wymiana uszkodzonego przegubu kulowego półosi napędowej jest jedynym skutecznym rozwiązaniem w przypadku stwierdzenia jego uszkodzenia. Przegub kulowy jest kluczowym elementem układu napędowego, który zapewnia przenoszenie momentu obrotowego oraz umożliwia ruch w różnych płaszczyznach. Gdy przegub ulega uszkodzeniu, może to prowadzić do poważnych problemów, takich jak nadmierne zużycie innych podzespołów, uszkodzenie skrzyni biegów czy drgań podczas jazdy, co wpływa na bezpieczeństwo. Wymiana przegubu na nowy zapewnia, że wszystkie właściwości mechaniczne i materiale są zgodne z normami producenta, co przekłada się na długotrwałość i niezawodność pojazdu. W praktyce, wymiana przegubu kulowego powinna być przeprowadzana z zachowaniem standardów jakości, takich jak użycie oryginalnych części zamiennych oraz przestrzeganie procedur montażowych, aby zminimalizować ryzyko przyszłych awarii. Trzeba również zwrócić uwagę na regularne przeglądy i konserwację układu napędowego, aby wcześniej wychwycić ewentualne uszkodzenia.

Pytanie 2

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. typ konstrukcji osnowy opony
B. maksymalne dopuszczalne obciążenie (nośność opony)
C. średnicę opony
D. maksymalną prędkość jazdy
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 3

Czym jest prąd elektryczny?

A. swobodny ruch ładunków ujemnych
B. chaotyczny ruch ładunków elementarnych
C. uporządkowany ruch ładunków elektrycznych
D. ukierunkowany przepływ ładunków neutralnych
W kontekście prądu elektrycznego, błędne koncepcje często opierają się na nieporozumieniach związanych z charakterystyką ładunków oraz ich ruchu. Przykład pierwszej odpowiedzi, mówiący o swobodnym przepływie ładunków ujemnych, jest mylący, ponieważ prąd elektryczny obejmuje ruch zarówno ładunków dodatnich, jak i ujemnych, jednak to w praktyce ładunki ujemne (elektrony) stanowią główny element tego ruchu w przewodnikach. Stwierdzenie o ukierunkowanym przepływie ładunków obojętnych zdaje się ignorować fundamentalną zasadę, że ładunki obojętne nie uczestniczą w przewodnictwie elektrycznym, ponieważ nie przenoszą ładunku elektrycznego. Ruch ładunków elementarnych, opisany w jednej z odpowiedzi, sugeruje przypadkowość, co jest sprzeczne z definicją prądu elektrycznego jako zjawiska uporządkowanego. Tego typu błędy mogą wynikać z niezrozumienia podstawowych zasad fizyki, takich jak różnica między ładunkiem elektrycznym a ruchem ładunków. W praktyce znajomość tych zasad jest kluczowa dla prawidłowego projektowania i analizy układów elektrycznych, co jest niezbędne w kontekście przestrzegania norm i standardów takich jak IEC 60529, które mają na celu zapewnienie bezpieczeństwa i efektywności w systemach elektrycznych.

Pytanie 4

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. nadmiaru powietrza
B. wypełnienia impulsu
C. wzmocnienia
D. oporu powietrza
Współczynnik nadmiaru powietrza to kluczowy parametr w procesie spalania, który definiuje stosunek rzeczywistej ilości powietrza dostarczonego do silnika do ilości powietrza potrzebnej do całkowitego spalenia paliwa. W praktyce, gdy współczynnik nadmiaru powietrza wynosi 1, oznacza to, że do silnika dostarczono dokładnie tyle powietrza, ile potrzeba do spalenia całego paliwa. Wartości powyżej 1 wskazują na nadmiar powietrza, co jest korzystne z punktu widzenia redukcji emisji szkodliwych substancji, ponieważ sprzyja całkowitemu spalaniu paliwa. Przykładowo, w silnikach spalinowych, takich jak te stosowane w pojazdach, optymalizacja tego współczynnika pozwala na osiągnięcie lepszej efektywności paliwowej oraz zmniejszenie emisji tlenków azotu. Normy emisji, takie jak Euro 6, wymagają stosowania technologii, które pozwalają na kontrolowanie współczynnika nadmiaru powietrza w celu spełnienia rygorystycznych standardów dotyczących czystości spalin. Dobra praktyka w zakresie projektowania silników i układów wydechowych polega na monitorowaniu tego współczynnika w czasie rzeczywistym, co umożliwia dostosowanie parametrów pracy silnika do zmieniających się warunków eksploatacji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. pompa wtryskowa
B. gaźnik
C. wtryskiwacz
D. pompa paliwowa
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W systemie chłodzenia silnika, ilość płynu krążącego w obiegu kontrolowana jest przez

A. termostat
B. wentylator chłodnicy
C. pompę cieczy
D. czujnik temperatury cieczy
Termostat odgrywa kluczową rolę w układzie chłodzenia silnika, regulując przepływ płynu chłodzącego w obiegu chłodzenia. Jego zadaniem jest otwieranie lub zamykanie przepływu płynu w zależności od temperatury silnika. Po uruchomieniu silnika, termostat pozostaje zamknięty, co pozwala na szybkie nagrzanie się silnika do optymalnej temperatury roboczej. Po osiągnięciu tej temperatury, termostat otwiera się, umożliwiając przepływ płynu chłodzącego przez chłodnicę, co skutkuje obniżeniem temperatury silnika. Dzięki tym właściwościom, termostat przyczynia się do efektywnego i stabilnego działania silnika, co ma kluczowe znaczenie dla wydajności oraz trwałości jednostki napędowej. W praktyce, regularna kontrola stanu termostatu jest zalecana w ramach przeglądów technicznych, a jego wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne warunki pracy silnika oraz zapobiec przegrzaniu lub zbyt niskiej temperaturze pracy.

Pytanie 9

Gdzie wykorzystywana jest przekładnia planetarna?

A. w rozruszniku
B. w prądnicy
C. w pompie wtryskowej
D. w alternatorze
Przekładnia planetarna jest kluczowym elementem stosowanym w rozrusznikach, pozwalającym na efektywne przekształcanie momentu obrotowego oraz zwiększenie prędkości obrotowej silnika. W konstrukcji rozrusznika, przekładnia planetarna działa jako mechanizm redukcyjny, który wspomaga uruchamianie silnika spalinowego, zapewniając odpowiednią moc podczas rozruchu. Dzięki zastosowaniu przekładni planetarnej możliwe jest uzyskanie dużego momentu obrotowego przy niewielkich wymiarach i masie urządzenia. W praktyce oznacza to, że rozrusznik osiąga wysoką wydajność, co jest niezbędne w sytuacjach, gdy silnik wymaga dużej energii startowej. Przekładnie planetarne charakteryzują się także wysoką niezawodnością oraz trwałością, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie motoryzacji. Dodatkowo, ich budowa pozwala na zmniejszenie hałasu i wibracji podczas pracy, co zwiększa komfort użytkowania pojazdu.

Pytanie 10

Jaką jednostkę stosuje się do określenia momentu obrotowego silnika?

A. Nm
B. KM
C. N
D. kW
Odpowiedzi takie jak KM, N i kW są powszechnie mylone z jednostką momentu obrotowego, ale każda z nich ma zupełnie inne znaczenie w kontekście mechaniki i energetyki. KM, czyli konie mechaniczne, to jednostka mocy, która opisuje szybkość wykonywania pracy, a nie siłę obrotową. Użycie koni mechanicznych w kontekście momentu obrotowego prowadzi do nieporozumień, gdyż wydaje się, że moc i moment obrotowy są ze sobą bezpośrednio powiązane, podczas gdy różnią się one zasadniczo. Z kolei niutony (N) to jednostka siły, a nie momentu; moment obrotowy wymaga zastosowania siły na określonej odległości od osi obrotu, co skutkuje koniecznością używania jednostki Nm. Wreszcie, kilowaty (kW) to także jednostka mocy, a nie momentu obrotowego. Rozróżnienie między mocą a momentem obrotowym jest kluczowe dla zrozumienia dynamiki silników i systemów mechanicznych. W praktyce, błędne wykorzystanie tych pojęć może prowadzić do niewłaściwej oceny wydajności silników oraz ich nieefektywnego projektu. Warto zwrócić uwagę na to, że moment obrotowy i moc są ze sobą powiązane, lecz każda z tych jednostek ma swoje specyficzne zastosowania i nie należy ich mylić, aby uniknąć poważnych błędów w analizie i projektowaniu systemów mechanicznych.

Pytanie 11

Aby dokręcić nakrętki lub śruby kół w pojeździe z odpowiednim momentem, należy zastosować klucz

A. do kół.
B. oczko.
C. płaski.
D. dynamometryczny.
Klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania nakrętek i śrub z precyzyjnie określonym momentem obrotowym, co jest kluczowe w kontekście kół samochodowych. Właściwy moment obrotowy zapewnia, że elementy mocujące są odpowiednio dokręcone, co zapobiega ich poluzowywaniu się w trakcie jazdy, a także minimalizuje ryzyko uszkodzeń gwintów. Standardy producentów pojazdów, takie jak ISO 6789, określają wymagania dotyczące narzędzi pomiarowych, w tym kluczy dynamometrycznych. Na przykład, dla wielu modeli samochodów moment dokręcania śrub kół wynosi od 90 do 120 Nm, w zależności od specyfikacji producenta. Użycie klucza dynamometrycznego pozwala na dokładne osiągnięcie tych wartości, co jest niezbędne dla bezpieczeństwa jazdy. Przykładem dobrych praktyk jest dokręcanie śrub w sekwencji krzyżowej, co równomiernie rozkłada siły działające na felgę. Dodatkowo, stosowanie klucza dynamometrycznego w regularnych przeglądach technicznych pojazdu zapewnia dłuższą żywotność elementów zawieszenia oraz opon.

Pytanie 12

Wartości sił hamowania kół na jednej osi pojazdu nie mogą różnić się o więcej niż 30%, przyjmując 100% jako standard

A. zmierzoną siłę wyższą
B. suma zmierzonych sił
C. siłę określoną przez producenta
D. zmierzoną siłę niższą
Analizując inne odpowiedzi, należy podkreślić, że pomiar siły hamowania powinien koncentrować się na parametrach dotyczących równomiernego rozkładu sił. Odpowiedź odnosząca się do zmierzonej siły mniejszej jest błędna, ponieważ w przypadku, gdy jedna z sił jest niższa, to oznacza, że hamowanie nie działa w sposób optymalny. Taka nierównomierność może prowadzić do niebezpiecznych sytuacji na drodze, w tym do poślizgu lub trudności w manewrowaniu. Suma zmierzonych sił nie jest właściwą miarą, ponieważ nie pozwala na ocenę, jak poszczególne koła działają w stosunku do siebie. Ważniejsze jest, aby zrozumieć, że każdy z komponentów hamulcowych powinien funkcjonować w harmonii. Ostatnia opcja, wskazująca na siłę podaną przez producenta, jest myląca, gdyż producenci często podają wartości teoretyczne, które mogą nie odpowiadać rzeczywistym warunkom użytkowania. W praktyce, wsłuchując się w odpowiednie normy i standardy, możemy zrozumieć, że rzeczywiste pomiary są kluczowe do oceny efektywności systemu hamulcowego, a ich analiza powinna opierać się na wytycznych narzucających konkretne marginesy tolerancji.

Pytanie 13

Ciecz chłodząca po zużyciu powinna być

A. przelać do pojemnika z zużytymi olejami
B. zneutralizować za pomocą wapna
C. poddać destylacji, odzyskując alkohol
D. przekazać do utylizacji
Oddanie zużytej cieczy chłodzącej do utylizacji to najodpowiedniejsze i najbardziej odpowiedzialne podejście, które jest zgodne z przepisami prawa ochrony środowiska. Ciecze chłodzące, w zależności od ich składu chemicznego, mogą zawierać substancje toksyczne lub zanieczyszczające, które mogą być szkodliwe zarówno dla ludzi, jak i dla środowiska. Dlatego ważne jest, aby nie wylewać ich do systemów kanalizacyjnych ani do zbiorników z innymi odpadami, jak np. zużyte oleje, co może prowadzić do poważnych zanieczyszczeń. Utylizacja tych cieczy odbywa się zgodnie z przepisami, które mogą obejmować odzysk energii lub recykling chemiczny. W praktyce, odpowiedzialne zarządzanie zużytymi cieczami chłodzącymi jest nie tylko wymogiem prawnym, ale także elementem strategii zrównoważonego rozwoju przedsiębiorstw, które dążą do minimalizacji wpływu na środowisko. Przykładem mogą być zakłady przemysłowe, które regularnie monitorują i dokumentują procesy utylizacji, aby zapewnić zgodność z lokalnymi i międzynarodowymi normami.

Pytanie 14

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. średnicówką trójpunktową
B. czujnikiem zegarowym
C. sprawdzianem pierścieniowym
D. mikrometrem
Mikrometr jest narzędziem pomiarowym o wysokiej precyzji, które umożliwia dokładne mierzenie średnicy czopa głównego wału korbowego. Jego konstrukcja, oparta na śrubie mikrometrycznej, pozwala na odczyt wartości z dokładnością do 0,01 mm, co jest kluczowe w zastosowaniach motoryzacyjnych i mechanicznych, gdzie tolerancje wymiarowe są bardzo ograniczone. Mikrometry są powszechnie stosowane do pomiaru średnic wałów, co zapewnia ich odpowiednią jakość oraz precyzyjne dopasowanie w silnikach. W praktyce, użycie mikrometru polega na umieszczeniu narzędzia wokół czopa i delikatnym dokręceniu śruby, aż do momentu, gdy mikrometr zacznie stawiać opór. Odczyt na skali mikrometru dostarcza bezpośrednich informacji o średnicy. Dodatkowo, mikrometry są kalibrowane zgodnie z normami ISO, co zapewnia ich wiarygodność w procesie pomiarowym. W przypadku pomiaru średnicy czopa głównego wału, dokładność oraz precyzja oferowane przez mikrometr są nieodzowne, aby uniknąć błędów, które mogłyby prowadzić do niewłaściwego montażu lub uszkodzenia silnika.

Pytanie 15

Aby zdjąć końcówkę drążka kierowniczego z ramienia zwrotnicy, jakie narzędzie powinno się zastosować?

A. zestawu szczypiec uniwersalnych
B. prasy warsztatowej
C. ściągacza sworzni kulowych
D. klucza samozaciskowego
Ściągacz sworzni kulowych to narzędzie zaprojektowane specjalnie do demontażu sworzni kulowych, które łączą różne elementy układu zawieszenia pojazdu, w tym końcówki drążków kierowniczych. Użycie ściągacza w tym kontekście jest nie tylko zalecane, ale i standardem w praktyce warsztatowej. Narzędzie to działa poprzez równomierne rozłożenie siły na sworzeń kulowy, co minimalizuje ryzyko uszkodzenia jego struktury oraz otaczających go elementów, takich jak zwrotnice. W przypadku usunięcia końcówki drążka kierowniczego, ściągacz pozwala na precyzyjne usunięcie bez konieczności stosowania nadmiernej siły, co jest kluczowe dla zachowania integralności układu kierowniczego. Dobrą praktyką jest również wcześniejsze nasmarowanie sworznia, co ułatwia jego demontaż. W warsztatach samochodowych często korzysta się z ściągaczy różnych typów, co jest zgodne z najlepszymi praktykami w branży, zapewniając bezpieczeństwo i efektywność pracy.

Pytanie 16

Przyczyną dźwięków pojawiających się w systemie napędowym pojazdu, które nasilają się podczas skrętów lub zawracania, jest uszkodzenie

A. skrzyni biegów
B. przekładni kierowniczej
C. przegubu napędowego
D. sprzęgła
Sprzęgło, przekładnia kierownicza oraz skrzynia biegów to elementy układu napędowego, które mają swoje specyficzne funkcje, ale ich uszkodzenia nie są typowo źródłem stukanek podczas skrętu. Sprzęgło służy do rozłączania silnika od skrzyni biegów, co umożliwia zmianę biegów. Jego uszkodzenie może prowadzić do trudności w zmianie biegów lub ich poślizgu, ale nie generuje stuków związanych z kierowaniem pojazdem. Przekładnia kierownicza odpowiada za kierowanie pojazdem, a jej usterki mogą objawiać się luźnym prowadzeniem lub trudnościami z kontrolą ruchu, lecz także nie prowadzą do charakterystycznych stuków podczas skręcania. Skrzynia biegów, z kolei, jest odpowiedzialna za przekazywanie mocy do kół zębatych, a jej awarie mogą manifestować się jako problemy z przełożeniem biegów, szumy lub wibracje podczas jazdy, ale nie są przyczyną stuków w układzie napędowym. Typowym błędem myślowym jest mylenie objawów związanych z różnymi elementami układu, co może prowadzić do niewłaściwej diagnozy i dalszych uszkodzeń. Dlatego kluczowe jest zrozumienie funkcji każdego z tych komponentów oraz ich wpływu na ogólne działanie pojazdu.

Pytanie 17

W standardowym układzie napędowym do połączenia skrzyni biegów z tylnym mostem wykorzystywany jest

A. wał napędowy
B. łącznik z tworzywa sztucznego
C. wał korbowy
D. przegub kulowy
Wał napędowy jest kluczowym elementem w klasycznym układzie napędowym, który łączy skrzynię biegów z mostem napędowym. Jego główną rolą jest przenoszenie momentu obrotowego z silnika, który jest generowany przez skrzynię biegów, na koła pojazdu. Wał napędowy jest zazwyczaj wykonany z materiałów o wysokiej wytrzymałości, takich jak stal, aby wytrzymać duże obciążenia oraz drgania, które występują podczas pracy. W praktyce, wał napędowy jest także wyposażony w przeguby, które pozwalają na kompensację ruchów zawieszenia. Dzięki temu, nawet jeśli koła nie poruszają się na tej samej wysokości, wał napędowy może efektywnie przenosić moc. W nowoczesnych pojazdach stosuje się różne rozwiązania, takie jak wały o zmiennej długości czy systemy tłumienia drgań, które poprawiają komfort jazdy oraz wydajność układu napędowego. Standardy branżowe, takie jak ISO 9001, kładą nacisk na jakość materiałów oraz precyzję wykonania, co jest kluczowe dla bezpieczeństwa i efektywności działania wałów napędowych.

Pytanie 18

W temperaturze 21°C zmierzono rezystancję wtryskiwacza elektromagnetycznego i uzyskano wynik 1,6 Ω. Jeśli prawidłowa rezystancja tego elementu w zakresie temperatury (20±5)°C wynosi (1,2+0,4) Ω, to analizowany wtryskiwacz charakteryzuje się

A. za wysoką rezystancją
B. za niską temperaturą
C. za wysoką temperaturą
D. prawidłową rezystancją
Pomiar rezystancji wtryskiwacza elektromagnetycznego w temperaturze 21°C na poziomie 1,6 Ω jest zgodny z przyjętymi normami, które wskazują, że prawidłowa rezystancja tego elementu w temperaturze (20±5)°C wynosi od 1,2 Ω do 1,6 Ω. Zatem, wynik 1,6 Ω znajduje się na górnej granicy akceptowalnego zakresu, co oznacza, że wtryskiwacz ma prawidłową rezystancję. W praktyce, rezystancja elementów elektronicznych zmienia się w zależności od temperatury, co należy uwzględnić przy diagnozowaniu usterek. W przypadku wtryskiwaczy, ich prawidłowa rezystancja jest istotna dla zapewnienia właściwego działania układów wtryskowych. Właściwe wartości rezystancji wskazują na prawidłowe działanie cewki elektromagnetycznej, co jest kluczowe dla efektywności wtrysku paliwa, a także minimalizuje ryzyko awarii silnika. W związku z tym, regularne pomiary rezystancji wtryskiwaczy, szczególnie przy zmianach temperatury, są dobrą praktyką diagnostyczną w branży motoryzacyjnej.

Pytanie 19

Układ przeniesienia napędu w klasycznej wersji składa się

A. ze sprzęgła, skrzyni biegów, półosi oraz piast kół
B. ze sprzęgła, skrzyni biegów, wału, przekładni głównej, mechanizmu różnicowego, półosi oraz piast kół
C. ze skrzyni biegów, wału, piast
D. z silnika, skrzyni biegów, mechanizmu różnicowego
No, niestety widzę, że niektóre odpowiedzi były nietrafione, co sugeruje, że możesz nie do końca rozumieć, jak działa klasyczny układ przeniesienia napędu. Wiele z tych odpowiedzi pomija ważne elementy, takie jak przekładnia główna czy mechanizm różnicowy. To trochę tak, jakbyś mówił o silniku, ale zapominał, że musi on jeszcze przekazać moc na koła. Jak omijasz te elementy, to widać, że nie za bardzo ogarniasz, jak one współpracują, żeby auto mogło gładko jechać, zwłaszcza w zakrętach, gdzie każde koło musi mieć swoją prędkość. Ważne jest też, żeby rozumieć, jak wał napędowy łączy skrzynię biegów z przekładnią główną, bo może to pomóc w uniknięciu problemów mechanicznych. Często popełniamy błąd, analizując każdy element z osobna, zamiast widzieć całość tego systemu. Zrozumienie tych relacji jest kluczowe, żeby dobrze diagnozować problemy i utrzymywać auto w świetnym stanie.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Weryfikacja otworów prowadnic zaworowych następuje za pomocą

A. płytek kontrolnych
B. średnicówki zegarowej
C. szczelinomierza
D. suwmiarki
Średnicówka zegarowa jest narzędziem pomiarowym, które oferuje wysoką precyzję i jest szeroko stosowane w inżynierii mechanicznej do pomiaru średnic otworów, w tym otworów prowadnic zaworowych. Dzięki możliwości precyzyjnego pomiaru z dokładnością do setnych milimetra, średnicówka zegarowa pozwala na weryfikację wymagań tolerancyjnych, co jest kluczowe w procesach produkcji i montażu elementów silników spalinowych. Weryfikacja otworów prowadnic zaworowych jest istotna dla zapewnienia ich odpowiedniego dopasowania oraz funkcjonalności, co wpływa na efektywność pracy silnika oraz jego trwałość. W standardach branżowych, takich jak ISO 286 dotyczących tolerancji wymiarowych, podkreślono znaczenie precyzyjnych pomiarów w kontekście zapewnienia jakości produkcji. Regularne stosowanie średnicówki zegarowej w praktyce przemysłowej przyczynia się do minimalizacji błędów montażowych oraz zwiększenia wydajności procesów produkcyjnych.

Pytanie 22

W przykładowym oznaczeniu opony 195/65R15 91H litera R wskazuje na

A. średnicę opony
B. promień opony R
C. indeks prędkości
D. oponę radialną
Litera R w oznaczeniu opony 195/65R15 oznacza, że jest to opona radialna. Opony radialne są obecnie standardem w przemyśle motoryzacyjnym, co wynika z ich konstrukcji, która zapewnia lepszą stabilność, mniejsze opory toczenia oraz lepsze właściwości jezdne w porównaniu do opon diagonalnych. W konstrukcji radialnej włókna osnowy bieżnika są ułożone promieniowo w stosunku do osi opony, co pozwala na bardziej elastyczne boczne ściany, a tym samym poprawia komfort jazdy i osiągi. Opony radialne charakteryzują się także wyższą odpornością na zużycie oraz lepszymi właściwościami trakcyjnymi, co czyni je idealnym wyborem zarówno dla pojazdów osobowych, jak i dostawczych. Warto również zwrócić uwagę, że w przypadku opon o wysokich osiągach, ich konstrukcja wpływa na zachowanie na zakrętach oraz w trudnych warunkach pogodowych, co ma kluczowe znaczenie dla bezpieczeństwa na drodze.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie właściwości mierzona są przy użyciu lampy stroboskopowej?

A. natężenia oświetlenia
B. kąta wyprzedzenia zapłonu
C. czasu wtrysku paliwa
D. podciśnienia w cylindrze
Lampy stroboskopowe są niezwykle ważnym narzędziem w diagnostyce silników spalinowych, szczególnie przy pomiarze kąta wyprzedzenia zapłonu. Umożliwiają one precyzyjne synchronizowanie momentu zapłonu mieszanki paliwowo-powietrznej w cylindrze, co jest kluczowe dla uzyskania optymalnej wydajności silnika. Stroboskop działa na zasadzie emitowania krótkich błysków światła, które są synchronizowane z obrotami wału korbowego. Dzięki temu, możliwe jest obserwowanie oznaczeń na kole zamachowym lub na obudowie silnika, co pozwala na dokładne ustawienie kąta zapłonu. W praktyce, jeśli kąt wyprzedzenia jest zbyt duży lub zbyt mały, może to prowadzić do detonacji, spadku mocy czy zwiększonego zużycia paliwa. Standardy branżowe, takie jak SAE J1349, sugerują odpowiednie metody pomiaru, zapewniając, że proces diagnostyki jest zgodny z uznawanymi normami oraz dobrą praktyką inżynierską. Warto pamiętać, że precyzyjne ustawienie kąta zapłonu przyczynia się nie tylko do efektywności pracy silnika, ale także do redukcji emisji zanieczyszczeń, co jest szczególnie istotne w kontekście rosnących norm ekologicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Omomierz można zastosować do weryfikacji czujnika

A. Halla
B. manometrycznego
C. położenia przepustnicy
D. zegara
Zegarowy, czujnik Halla oraz manometryczny to różne rodzaje czujników, które pełnią inne funkcje i nie są odpowiednie do pomiaru położenia przepustnicy. Czujnik zegarowy służy do pomiaru czasu lub częstotliwości zdarzeń, co jest zupełnie inną dziedziną niż monitorowanie położenia elementów silnika. Z kolei czujnik Halla jest wykorzystywany do detekcji pól magnetycznych i ma zastosowanie np. w systemach zapłonowych lub do pomiaru prędkości obrotowej, natomiast nie nadaje się do bezpośredniego pomiaru kątów otwarcia przepustnicy. Czujnik manometryczny, z drugiej strony, jest stosowany do pomiaru ciśnienia gazów lub cieczy, a więc również nie jest właściwym narzędziem do oceny położenia przepustnicy. Wybór odpowiedniego czujnika jest kluczowy dla uzyskania rzetelnych danych, a mylenie ich funkcji może prowadzić do błędnych wniosków diagnostycznych. Często występującym błędem jest zakładanie, że każdy czujnik może być użyty zamiennie, co jest niezgodne z zasadami inżynierii i diagnostyki pojazdów. Dlatego ważne jest, aby mieć świadomość specyfiki każdego czujnika oraz jego zastosowania w kontekście układów elektronicznych pojazdu.

Pytanie 27

Podczas serwisowania głowicy silnika stwierdzono, że jedno z gniazd świecy zapłonowej ma zniszczony gwint. W tej sytuacji mechanik powinien

A. wsadzić nową świecę zapłonową, która naprawi uszkodzony gwint
B. tulejować otwór i ponownie nagwintować
C. rozwiercić otwór na nowy wymiar naprawczy i ponownie nagwintować
D. naprawić dotychczasowy gwint przy użyciu narzynki
Tulejowanie otworu i nagwintowanie na nowo to chyba najlepsza metoda na naprawę uszkodzonego gwintu w gnieździe świecy zapłonowej. Chodzi o to, żeby wsunąć tuleję do otworu, co przywraca prawidłowe mocowanie świecy. Z tego, co wiem, tuleje są zazwyczaj robione z materiałów, które dobrze znoszą wysokie temperatury i ciśnienie, więc są świetnym rozwiązaniem w silnikach. Pomyśl tylko – jeśli gwint w głowicy silnika coś nadgryzła korozja albo źle wkręcona świeca, to tulejowanie będzie znacznie lepsze niż jakieś doraźne naprawy. W branży uznaje się, że ta metoda jest zdecydowanie trwalsza i bardziej niezawodna, więc czujesz, że robisz dobrze. Właściwie to stosowanie tulei w takich naprawach to sama czołówka najlepszych praktyk, bo znacznie zmniejsza ryzyko kolejnych uszkodzeń, które mogłyby być spowodowane źle wkręconą świecą.

Pytanie 28

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. spektrofotometru
B. oscyloskopu
C. woltomierza
D. diagnoskopu
Odpowiedź "diagnoskopu" jest poprawna, ponieważ diagnoskop to specjalistyczne urządzenie służące do komunikacji z systemem OBDII/EOBD, które jest standardem diagnostyki w nowoczesnych pojazdach. OBDII (On-Board Diagnostics II) to system monitorujący stan najważniejszych podzespołów samochodu, a także kontrolujący emisję spalin. Umożliwia on odczytanie kodów błędów, które są generowane przez komputer pokładowy w przypadku wystąpienia problemów z silnikiem lub innymi istotnymi komponentami. W praktyce użycie diagnoskopu pozwala mechanikom szybko zidentyfikować źródło problemu, co prowadzi do efektywniejszej diagnostyki i naprawy pojazdu. Przykładowo, w przypadku, gdy kontrolka silnika zaświeci się na desce rozdzielczej, diagnoskop umożliwi odczytanie kodu błędu, co pozwoli na szybkie podjęcie działań naprawczych. Stosowanie diagnoskopów jest zgodne z najlepszymi praktykami branżowymi, ponieważ przyspiesza proces diagnostyki i poprawia jakość usług serwisowych, redukując jednocześnie koszty naprawy.

Pytanie 29

Jak wyraża się moc silnika spalinowego?

A. kW
B. MPa
C. Nm
D. kWh
Moc silnika spalinowego podawana w kilowatach (kW) jest standardowym sposobem określania wydajności silników, co ma znaczenie zarówno w przemyśle motoryzacyjnym, jak i w aplikacjach przemysłowych. Moc wyrażona w kW odnosi się do ilości energii, jaką silnik jest w stanie wygenerować w jednostce czasu. Przykładowo, silnik samochodu osobowego o mocy 100 kW będzie w stanie wytworzyć 100 kilowatogodzin energii w ciągu jednej godziny pracy. Ponadto, moc jest kluczowym parametrem w kontekście przepisów dotyczących emisji spalin oraz regulacji dotyczących efektywności energetycznej. W praktyce, moc silnika ma bezpośredni wpływ na osiągi pojazdu, jego zdolność do przyspieszania oraz na efektywność paliwową. Zgodnie z normami ISO 14396, moc silnika spalinowego powinna być mierzona w sposób, który uwzględnia warunki testowe, co zapewnia porównywalność wyników między różnymi producentami i modelami. Dlatego też, wiedza na temat jednostki kW jest istotna dla inżynierów, techników oraz użytkowników, którzy chcą dokonywać świadomych wyborów dotyczących technologii silnikowej.

Pytanie 30

Aluminiową chłodnicę z nieszczelnością należy

A. naprawić przy użyciu spawania
B. naprawić wykorzystując lutowanie twarde
C. wymienić na nową
D. naprawić przy pomocy klejenia
Wymiana nieszczelnej aluminiowej chłodnicy na nową jest najbardziej zalecaną opcją ze względu na kilka kluczowych czynników. Przede wszystkim, chłodnice aluminiowe są często stosowane w różnych aplikacjach, w tym w motoryzacji i chłodnictwie przemysłowym, ze względu na ich doskonałe właściwości przewodzenia ciepła oraz lekkość. W przypadku nieszczelności, mogą występować mikropęknięcia lub uszkodzenia, które mogą wpłynąć na ich efektywność i bezpieczeństwo eksploatacji. Naprawa poprzez lutowanie lub spawanie może wydawać się kusząca, jednak w praktyce często prowadzi to do kompromisów w wytrzymałości materiału oraz ryzyka ponownego uszkodzenia. Dodatkowo, standardy jakości w wielu branżach, takie jak ISO 9001, zachęcają do wymiany uszkodzonych elementów, co zapewnia długoterminową niezawodność i bezpieczeństwo. Dlatego inwestycja w nową chłodnicę jest z perspektywy technicznej i ekonomicznej bardziej uzasadniona, a także zapewnia zgodność z najlepszymi praktykami inżynieryjnymi.

Pytanie 31

EGR to skrót oznaczający system

A. wspomagania układu hamulcowego
B. zmiennych faz rozrządu
C. recyrkulacji spalin
D. wspomagania układu kierowniczego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 32

Jakie narzędzie jest wykorzystywane do właściwego ustawienia kąta wyprzedzenia zapłonu w silniku ZI?

A. suwmiarki.
B. oscyloskopu.
C. urządzenia diagnostycznego.
D. lampy stroboskopowej.
Lampa stroboskopowa jest kluczowym narzędziem wykorzystywanym do precyzyjnego ustawiania kąta wyprzedzenia zapłonu w silnikach ZI. Działa na zasadzie emitowania błysków światła w określonym rytmie, co pozwala mechanikowi na obserwację pozycji znaku zapłonu na kole zamachowym silnika w czasie rzeczywistym. Dzięki temu można dostosować kąt wyprzedzenia zapłonu, co jest niezbędne dla optymalnej pracy silnika, jego wydajności oraz osiągów. Ustawienie to ma bezpośredni wpływ na spalanie mieszanki paliwowo-powietrznej, co z kolei wpływa na moc silnika oraz emisję spalin. W warsztatach stosuje się lampy stroboskopowe zgodnie z normami i standardami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo pracy. W praktyce mechanik ustawia silnik na określone obroty, a następnie przy pomocy lampy stroboskopowej kontroluje kąty zapłonu, co pozwala na precyzyjne dostosowanie jego parametrów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Glikol etylenowy stanowi kluczowy element

A. płynu do spryskiwaczy
B. oleju silnikowego
C. płynu chłodzącego
D. płynu do wspomagania
Glikol etylenowy jest kluczowym składnikiem płynu chłodzącego, który odgrywa fundamentalną rolę w utrzymaniu optymalnej temperatury silnika w pojazdach. Jego główną funkcją jest zapobieganie zamarzaniu płynu w niskich temperaturach oraz ochrona przed przegrzaniem w wysokich temperaturach. Ponadto, glikol etylenowy wykazuje właściwości antykorozyjne, co jest istotne w kontekście długotrwałego użytkowania systemu chłodzenia. Dzięki tym właściwościom, płyn chłodzący z glikolem etylenowym jest zgodny z normami SAE (Society of Automotive Engineers), co zapewnia jego wysoką jakość oraz bezpieczeństwo stosowania w różnych warunkach eksploatacyjnych. W praktyce, stosowanie płynów chłodzących zawierających glikol etylenowy zmniejsza ryzyko uszkodzeń silnika przez zamarzanie lub przegrzewanie, co w efekcie przyczynia się do wydłużenia żywotności pojazdu i poprawy jego wydajności.

Pytanie 35

Jakie jest łączne wydatki na naprawę systemu smarowania, jeśli cena pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a cena oleju silnikowego to 160 zł? Czas potrzebny na naprawę to 150 minut przy stawce za godzinę roboczą wynoszącej 100 zł?

A. 550 zł
B. 600 zł
C. 650 zł
D. 450 zł
Całkowity koszt naprawy układu smarowania wynosi 600 zł, co wynika z sumy kosztów części oraz robocizny. Koszt pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a koszt oleju silnikowego to 160 zł. Łącznie, wydatki na części wynoszą 145 zł + 45 zł + 160 zł = 350 zł. Następnie obliczamy koszt robocizny. Czas naprawy to 150 minut, co odpowiada 2,5 godziny. Przy stawce 100 zł za roboczo-godzinę, koszt robocizny wynosi 2,5 * 100 zł = 250 zł. Sumując koszty części oraz robocizny, otrzymujemy 350 zł + 250 zł = 600 zł. Warto zaznaczyć, że dokładne obliczenia kosztów naprawy są kluczowe w warsztatach, ponieważ pomagają w określeniu ceny dla klienta oraz w zarządzaniu budżetem warsztatu. Praktyczne podejście do kalkulacji kosztów naprawczych może również przyczynić się do lepszego planowania i kontroli wydatków.

Pytanie 36

Czym jest liczba cetanowa?

A. wartością opałową paliwa
B. odpornością paliwa na samozapłon
C. zdolnością paliwa do samozapłonu
D. odpornością paliwa na niskie temperatury
Liczba cetanowa to kluczowy wskaźnik jakości paliw silnikowych, szczególnie olejów napędowych. Określa zdolność paliwa do samozapłonu, co jest istotne podczas jego spalania w silnikach wysokoprężnych. Wyższa liczba cetanowa oznacza lepszą zdolność paliwa do szybkiego zapłonu w komorze spalania, co przekłada się na bardziej efektywne i stabilne działanie silnika. Praktycznie, paliwa o wyższej liczbie cetanowej przyczyniają się do redukcji emisji szkodliwych substancji i poprawy osiągów silnika, co jest zgodne z normami emisji spalin, takimi jak Euro 6. W branży transportowej oraz motoryzacyjnej zaleca się stosowanie paliw o liczbie cetanowej nie mniejszej niż 51 dla osiągnięcia optymalnej wydajności pracy silnika. Dobrą praktyką jest także testowanie paliw pod kątem liczby cetanowej w celu uniknięcia problemów z zapłonem, co z kolei może prowadzić do uszkodzeń silnika oraz zwiększonego zużycia paliwa.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Na kloszu lampy światła do jazdy dziennej powinno być umieszczone oznaczenie

A. B
B. F
C. G
D. RL
Odpowiedź RL oznacza "Światła do jazdy dziennej" i jest zgodna z przepisami obowiązującymi w wielu krajach, w tym w Unii Europejskiej. Światła do jazdy dziennej, często określane jako DRL (Daytime Running Lights), mają za zadanie zwiększenie widoczności pojazdu w ciągu dnia, co przyczynia się do poprawy bezpieczeństwa na drogach. Zgodnie z normami EN 12368, które dotyczą sygnalizacji drogowej, stosowanie świateł do jazdy dziennej powinno być zgodne z odpowiednimi oznaczeniami, aby ułatwić identyfikację ich funkcji zarówno dla kierowców, jak i innych uczestników ruchu. Przykładowo, samochody wyposażone w takie światła mogą być lepiej widoczne na drodze, co jest szczególnie istotne w warunkach złej pogody lub w miejscach o ograniczonej widoczności. Właściwe oznaczenie RL pozwala również na efektywniejsze przeprowadzanie kontroli technicznych pojazdów, co jest praktyką stosowaną w wielu krajach, aby zapewnić bezpieczeństwo na drogach.

Pytanie 39

Jakie narzędzie stosuje się do pomiaru wewnętrznych średnic cylindra?

A. sprawdzianu do otworów
B. suwmiarki uniwersalnej
C. średnicówki czujnikowej
D. średnicówki mikrometrycznej
Pomiar średnic wewnętrznych cylindrów to kluczowy aspekt w wielu dziedzinach inżynierii mechanicznej, a wybór odpowiedniego narzędzia pomiarowego ma istotny wpływ na jakość wykonania. Sprawdzian do otworów, mimo że może być używany do oceny tolerancji średnicy, nie dostarcza dokładnych wartości pomiarowych, lecz jedynie informacji o zgodności z określonymi normami wymiarowymi. To narzędzie jest bardziej stosowane do inspekcji niż do precyzyjnego pomiaru, co ogranicza jego zastosowanie w sytuacjach wymagających wysokiej dokładności. Suwmiarka uniwersalna to narzędzie o szerokim zakresie, które choć może być używane do pomiarów średnic, nie zapewnia takiej samej precyzji jak średnicówka mikrometryczna. Sukcesywne pomiary suwmiarką mogą prowadzić do błędów związanych z błędami odczytu lub niewłaściwym ustawieniem narzędzia. Średnicówka czujnikowa, mimo że jest bardziej precyzyjna od suwmiarki, nie jest standardowym narzędziem do pomiaru średnic wewnętrznych w porównaniu do średnicówki mikrometrycznej. Zastosowanie nieodpowiednich narzędzi może prowadzić do błędów pomiarowych, co w konsekwencji wpływa na jakość i funkcjonalność wyrobów. Kluczowe jest zrozumienie, że wybór narzędzia powinien być podyktowany wymaganiami pomiarowymi oraz standardami branżowymi, aby zapewnić odpowiednią jakość i dokładność wyników.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.