Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 18:16
  • Data zakończenia: 19 maja 2025 18:32

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)

A. 350 bar
B. 70 bar
C. 525 bar
D. 35 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór redukcyjny, manometr, smarownica
B. sprężarka, filtr, manometr, smarownica
C. filtr, zawór dławiący, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termistora NTC
B. Termopary J
C. Termistora PTC
D. Termopary K
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Który z przekształtników używanych w systemach zasilania dla urządzeń mechatronicznych przekształca energię prądu stałego na energię prądu przemiennego z regulowanymi wartościami częstotliwości i napięcia?

A. Prostownik
B. Falownik
C. Rozruch progresywny
D. Regulator napięcia przemiennego
Wybór odpowiedzi, która nie wskazuje na falownik, może wynikać z niepełnego zrozumienia roli różnych urządzeń w układach zasilających. Sterownik napięcia przemiennego to urządzenie, które reguluje parametry napięcia AC, ale nie zamienia prądu stałego na prąd przemienny. Jego główną funkcją jest kontrola stabilności oraz jakości dostarczanego napięcia, bez konwersji źródła energii. Softstart z kolei jest mechanizmem stosowanym do kontrolowania rozruchu silników, zmniejszając skutki tzw. uderzenia prądowego, ale nie ma on możliwości generowania prądu przemiennego z prądu stałego. Prostownik, z drugiej strony, konwertuje energię prądu przemiennego na prąd stały, co jest odwrotnością działania falownika. W praktyce, nieprawidłowy wybór może prowadzić do nieefektywnego działania systemu, co skutkuje zwiększonym zużyciem energii oraz potencjalnymi uszkodzeniami urządzeń. Aby uniknąć takich błędów, warto zrozumieć podstawowe funkcje i zasady działania tych urządzeń, co z pewnością wpłynie na poprawę efektywności i niezawodności systemów mechatronicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Pogłębianie
B. Rozwiercanie
C. Wiercenie
D. Wiercenie wtórne
Pogłębianie to super ważny proces, który polega na powiększeniu średnicy otworu. To jest kluczowe, kiedy musimy wrzucić do niego większe elementy, jak na przykład łby śrub. Do tego używa się specjalnych narzędzi, które dokładnie zwiększają średnicę, co ma ogromne znaczenie w inżynierii, bo tolerancje wymiarowe są tutaj na wagę złota. Pogłębianie sprawdza się zwłaszcza wtedy, gdy otwór już jest, ale musimy go tylko delikatnie powiększyć, na przykład przy montażu różnych złączek. W praktyce pamiętaj, żeby dbać o jakość powierzchni otworu, bo to kluczowe. Można to osiągnąć, używając odpowiednich narzędzi i ustawiając dobre parametry obróbcze. Dobrze jest stosować narzędzia pogłębiające o odpowiedniej geometrii – dzięki temu jakość obróbki będzie lepsza i unikniemy uszkodzeń materiału.

Pytanie 18

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. śrub, nakrętek, podkładek
B. narzędzi do obróbki skrawaniem
C. łożysk tocznych
D. resorów, sprężyn i drążków skrętnych
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. zbyt wysokie napięcie zasilające
B. nadmierne obciążenie silnika
C. wysyłanie impulsów sterujących w błędnej kolejności
D. brak modyfikacji częstotliwości impulsów z kontrolera
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 22

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 750 Hz
B. Od 6 750 Hz
C. Od 350 Hz
D. Od 6 375 Hz
Wybór wartości z zakresu 6 375 Hz, 6 750 Hz lub 350 Hz jako minimalnej częstotliwości dolnej może wynikać z nieporozumienia dotyczącego definicji szerokości pasma przepustowego oraz sposobu obliczania częstotliwości dolnej. Często w praktyce błędnie przyjmuje się, że częstotliwość dolna jest obliczana na podstawie jedynie jednostkowych wartości, co może prowadzić do rozbieżności w wynikach. Szerokość pasma dla wzmacniacza określa, jakie pasmo częstotliwości sygnałów będzie wzmacniane i jest obliczana jako różnica między częstotliwością górną a dolną. W tym przypadku, mając szerokość pasma 12 750 Hz i częstotliwość górną 13 500 Hz, poprawne obliczenie częstotliwości dolnej prowadzi do 750 Hz. Wybór wyższych wartości, jak 6 375 Hz czy 6 750 Hz, ignoruje fakt, że wzmacniacz nie będzie aktywowany w tym zakresie, co prowadzi do pominięcia istotnych sygnałów. Natomiast wybór 350 Hz także jest błędny, ponieważ nie uwzględnia, że częstotliwość dolna jest zawsze wyższa niż zero w kontekście wzmacniaczy, które operują na rzeczywistych sygnałach. Takie błędne podejście często prowadzi do nieprawidłowego doboru sprzętu audio lub telekomunikacyjnego, co w rezultacie może obniżyć jakość sygnału i wydajność systemu. Zrozumienie tych koncepcji jest kluczowe dla skutecznego projektowania systemów elektronicznych oraz ich odpowiednich zastosowań w praktyce.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w szerszym zakresie przy zmianach ciśnienia
B. w mniejszym zakresie przy zmianach ciśnienia
C. w mniejszym zakresie przy zmianach temperatury
D. w szerszym zakresie przy zmianach temperatury
Wybór odpowiedzi wskazujących na szerszy zakres zmian lepkości przy zmianach ciśnienia czy temperatury jest związany z nieporozumieniami na temat działania olejów hydraulicznych i ich właściwości. Wysoki współczynnik lepkości oznacza, że olej jest bardziej oporny na zmiany, co w kontekście temperatury oznacza, że jego lepkość nie zmienia się znacząco, gdy temperatura wzrasta lub maleje. Z kolei przy niskim współczynniku lepkości, olej jest bardziej podatny na te zmiany. W związku z tym, sugerowanie, że olej o wysokiej lepkości może zmieniać swoje właściwości w szerszym zakresie przy zmianach temperatury, jest niezgodne z zasadami fizyki płynów. W układach hydraulicznych, oleje muszą charakteryzować się stabilnością lepkości w określonych warunkach eksploatacyjnych, co jest kluczowe dla efektywności działania. Warto zwrócić uwagę, że nieprawidłowe podejście do doboru oleju może prowadzić do nieefektywności systemu, zwiększonego zużycia energii, a nawet do uszkodzeń komponentów. Dlatego tak ważne jest zrozumienie, jak właściwości oleju wpływają na jego działanie w praktycznych zastosowaniach hydraulicznych.

Pytanie 31

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać koło pasowe i schłodzić wał
C. Podgrzać koło pasowe oraz wał
D. Podgrzać wał i schłodzić koło pasowe
Rozgrzanie koła pasowego i schłodzenie wału to technika stosowana w celu uzyskania odpowiedniego pasowania między tymi elementami. Kiedy koło pasowe jest podgrzewane, jego średnica zwiększa się, co pozwala na jego łatwe nałożenie na wał. Z kolei schłodzenie wału powoduje jego kurczenie, co dodatkowo ułatwia proces montażu. Po zakończeniu procesu chłodzenia wał wraca do pierwotnych wymiarów, a koło pasowe, które stygło, kurczy się, mocno przylegając do wału. Tego typu pasowanie nazywa się pasowaniem cieplnym i jest szeroko stosowane w przemyśle, zwłaszcza w przypadku montażu wałów napędowych i innych elementów ruchomych. Przykładem praktycznego zastosowania tej metody jest montaż kół pasowych w silnikach spalinowych, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla ich wydajności oraz żywotności. Warto także zauważyć, że ta procedura powinna być przeprowadzana zgodnie z zaleceniami producentów, aby zapewnić optymalne efekty oraz uniknąć uszkodzenia elementów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Triaki oraz diaki
B. Diody
C. Diody i tyrystory
D. Triaki
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 34

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o większej średnicy
B. poluzowania naciągu pasów
C. zdemontowania koła pasowego o mniejszej średnicy
D. demontażu wałów
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 35

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. dermatologicznych
B. układu pokarmowego
C. układu sercowego
D. układu słuchu
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 5°38'
B. 2°49'
C. 11°15'
D. 22°30'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.

Pytanie 40

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Efektywność
B. Bezobsługowość
C. Iskrobezpieczeństwo
D. Niezawodność
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.