Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 3 maja 2025 07:27
  • Data zakończenia: 3 maja 2025 08:06

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie jest używane w systemie Windows do przywracania właściwych wersji plików systemowych?

A. debug
B. sfc
C. verifer
D. replace
Wszystkie pozostałe opcje nie są odpowiednie dla przywracania prawidłowych wersji plików systemowych w Windows. 'Replace' jest ogólnym terminem odnoszącym się do procesu zastępowania plików, jednak nie jest to narzędzie ani komenda w systemie Windows, które miałoby na celu naprawę plików systemowych. Użytkownicy często mylą ten termin z funkcjami zarządzania plikami, ale rzeczywiście nie odnosi się on do skanowania ani naprawy plików systemowych. 'Debug' to narzędzie służące głównie do analizy i debugowania aplikacji, a nie do zarządzania plikami systemowymi. Jego głównym celem jest identyfikacja i naprawa błędów w kodzie programów, co jest zupełnie inną funkcjonalnością niż ta, którą oferuje 'sfc'. Z kolei 'verifier' to narzędzie do monitorowania sterowników i sprawdzania ich stabilności, które również nie ma związku z przywracaniem uszkodzonych plików systemowych. Niektórzy użytkownicy mogą myśleć, że wszystkie te narzędzia są zbliżone w swojej funkcji, co prowadzi do nieporozumień. Kluczowym błędem jest założenie, że narzędzia do debugowania czy weryfikacji mogą zastąpić konkretne funkcje skanowania i naprawy systemu, co w praktyce może prowadzić do niewłaściwych działań i wydłużenia czasu rozwiązania problemów z systemem.

Pytanie 2

Użytkownicy sieci Wi-Fi zauważyli zakłócenia oraz częste przerwy w połączeniu. Przyczyną tej sytuacji może być

A. niewłaściwa metoda szyfrowania sieci
B. zbyt słaby sygnał
C. niez działający serwer DHCP
D. niepoprawne hasło do sieci
Zbyt słaby sygnał jest jedną z najczęstszych przyczyn problemów z połączeniem Wi-Fi, ponieważ wpływa na jakość transmisji danych. W przypadku, gdy sygnał jest osłabiony, może występować opóźnienie w przesyłaniu danych, co prowadzi do częstych zrywania połączenia. Niskiej jakości sygnał może być wynikiem różnych czynników, takich jak odległość od routera, przeszkody (np. ściany, meble) oraz zakłócenia elektromagnetyczne od innych urządzeń. Aby poprawić jakość sygnału, warto zastosować kilka rozwiązań, takich jak zmiana lokalizacji routera, użycie wzmacniaczy sygnału lub routerów z technologią Mesh. Dobrą praktyką jest również przeprowadzenie analizy pokrycia sygnałem za pomocą specjalistycznych aplikacji, które pomogą zidentyfikować obszary z niskim sygnałem. Warto również dbać o aktualizację oprogramowania routera, aby korzystać z najnowszych poprawek i funkcji, co przyczynia się do optymalizacji sieci.

Pytanie 3

W systemie Linux narzędzie iptables wykorzystuje się do

A. konfigurowania serwera pocztowego
B. konfigurowania zdalnego dostępu do serwera
C. konfigurowania zapory sieciowej
D. konfigurowania karty sieciowej
Wybrałeś odpowiedź o konfiguracji karty sieciowej, ale to nie jest do końca to, co robi iptables. Iptables nie zajmuje się konfiguracją sprzętu ani kart sieciowych, to bardziej narzędzie do ustawiania reguł zapory. Często ludzie mylą pojęcia związane z bezpieczeństwem sieci, takie jak zapora z innymi rzeczami, jak serwery pocztowe czy dostęp zdalny. Na przykład, konfiguracja serwera pocztowego dotyczy ustawień związanych z e-mailami, co nie ma nic wspólnego z tym, co robi iptables. Dokładne zrozumienie funkcji iptables jest kluczowe dla bezpieczeństwa w Linuxie, bo źle skonfigurowane reguły mogą narazić sieć na niebezpieczeństwa. Ważne, żeby administratorzy znali różnice między tymi technologiami, bo to może zapobiec wielu powszechnym błędom.

Pytanie 4

Termin określający wyrównanie tekstu do prawego i lewego marginesu to

A. wersalikiem
B. kapitalikiem
C. interlinią
D. justowaniem
Justowanie to proces wyrównywania tekstu w dokumencie do prawego i lewego marginesu, co sprawia, że tekst jest bardziej estetyczny i uporządkowany. Technika ta jest powszechnie stosowana w publikacjach drukowanych, takich jak książki, czasopisma czy broszury, a także w dokumentach elektronicznych. Dzięki justowaniu tekst staje się bardziej czytelny, a jego układ jest harmonijny, co jest szczególnie ważne w kontekście materiałów marketingowych i profesjonalnych. W praktyce, justowanie może odwzorowywać różne style wizualne, w zależności od potrzeb projektu, co wynika z zastosowania odpowiednich algorytmów wyrównywania i przestrzeni między wyrazami. Warto zaznaczyć, że standardy typograficzne, takie jak te wprowadzane przez American National Standards Institute (ANSI) czy International Organization for Standardization (ISO), podkreślają znaczenie estetyki i czytelności tekstu, co czyni justowanie kluczowym elementem w projektowaniu wszelkiego rodzaju dokumentów.

Pytanie 5

Jaką czynność można wykonać podczas konfiguracji przełącznika CISCO w interfejsie CLI, bez przechodzenia do trybu uprzywilejowanego, na poziomie dostępu widocznym w powyższej ramce?

A. Tworzenie sieci VLAN
B. Wyświetlenie tablicy ARP
C. Określanie haseł dostępu
D. Zmiana nazwy systemowej
Zmiana nazwy systemowej, określanie haseł dostępu oraz tworzenie sieci VLAN wymagają dostępu do trybu uprzywilejowanego, co oznacza, że nie mogą być realizowane na podstawowym poziomie dostępu. Często występującym błędem myślowym jest skojarzenie podstawowych komend administracyjnych z podstawowym poziomem dostępu, co prowadzi do nieporozumień. Zmiana nazwy systemowej jest kluczowym krokiem w procesie identyfikacji urządzenia w sieci. Użytkownik musi wykonać polecenie 'hostname [nazwa]', które jest dostępne jedynie w trybie uprzywilejowanym, ponieważ zmiana tej nazwy wpływa na cały system i jego funkcjonowanie. Podobnie, określanie haseł dostępu, które obejmuje polecenia takie jak 'enable secret [hasło]', także nie może być wykonane bez dostępu do trybu uprzywilejowanego. Ta operacja jest niezbędna dla zapewnienia bezpieczeństwa urządzenia, co jest kluczowe w środowiskach produkcyjnych. Tworzenie sieci VLAN (Virtual Local Area Network) to kolejna operacja, która wymaga podniesienia poziomu uprawnień do trybu uprzywilejowanego. VLAN-y są używane do segmentacji ruchu w sieci oraz zwiększenia bezpieczeństwa poprzez oddzielanie różnych grup użytkowników. Ostatecznie, zrozumienie, które operacje są dostępne na poszczególnych poziomach uprawnień, jest kluczowe dla efektywnego zarządzania siecią oraz dla zapewnienia jej bezpieczeństwa i stabilności.

Pytanie 6

Celem złocenia styków złącz HDMI jest

A. stworzenie produktu o ekskluzywnym charakterze, aby zwiększyć dochody ze sprzedaży
B. umożliwienie przesyłu obrazu w rozdzielczości 4K
C. poprawa przewodności i trwałości złącza
D. zwiększenie przepustowości ponad wartości określone przez standard
Złocenie styków złącz HDMI ma na celu przede wszystkim poprawę przewodności oraz zwiększenie żywotności złącza. Złoto, dzięki swoim właściwościom, jest doskonałym przewodnikiem, co oznacza, że sygnał przesyłany przez złącze HDMI będzie mniej podatny na straty i zakłócenia. W praktyce oznacza to lepszą jakość obrazu i dźwięku, co jest szczególnie istotne w zastosowaniach multimedialnych, gdzie ważna jest precyzja i wysokie standardy. Wysokiej jakości komponenty, takie jak złącza HDMI ze złoconymi stykami, są często używane w profesjonalnym sprzęcie audio-wideo, takim jak systemy kina domowego, profesjonalne monitory czy urządzenia do edycji wideo. Standard EIA-861 definiuje wymagania dotyczące złącz HDMI, a stosowanie złocenia w tych złączach jest zgodne z najlepszymi praktykami branżowymi, co potwierdza jego znaczenie dla jakości transmisji sygnału. Dodatkowo, złocenie styków chroni przed korozją, co wydłuża żywotność urządzenia, a także przyczynia się do stabilności połączenia w dłuższym okresie eksploatacji.

Pytanie 7

W systemie Windows po wykonaniu polecenia systeminfo nie otrzyma się informacji o

A. zainstalowanych aktualizacjach
B. liczbie partycji podstawowych
C. zamontowanych kartach sieciowych
D. liczbie procesorów
Polecenie systeminfo w systemie Windows jest użytecznym narzędziem do uzyskiwania szczegółowych informacji o systemie operacyjnym, w tym takich danych jak liczba procesorów, zainstalowane poprawki oraz zamontowane karty sieciowe. Jednakże, nie dostarcza ono informacji o liczbie partycji podstawowych. Partycje podstawowe są kluczowe w kontekście zarządzania dyskami, a ich konfiguracja i ilość można zweryfikować za pomocą narzędzi takich jak Disk Management lub polecenia diskpart. Te narzędzia są bardziej precyzyjne w analizie struktury dysku, co pozwala administratorom lepiej zarządzać przestrzenią dyskową i organizacją danych. Przykładowo, w sytuacji, gdy konieczne jest dodanie nowej partycji, znajomość liczby partycji podstawowych oraz ich typu jest kluczowa, aby uniknąć problemów z zarządzaniem danymi. Dobre praktyki w administracji systemami Windows obejmują regularne sprawdzanie i aktualizowanie tych informacji za pomocą odpowiednich narzędzi, co pozwala na optymalizację wydajności systemu oraz zapewnienie jego stabilności.

Pytanie 8

Komputer K1 jest połączony z interfejsem G0 rutera, a komputer K2 z interfejsem G1 tego samego urządzenia. Na podstawie danych przedstawionych w tabeli, określ właściwy adres bramy dla komputera K2.

InterfejsAdres IPMaska
G0172.16.0.1255.255.0.0
G1192.168.0.1255.255.255.0

A. 192.168.0.1
B. 172.16.0.2
C. 192.168.0.2
D. 172.16.0.1
Poprawnym adresem bramy dla komputera K2 jest adres przypisany do interfejsu sieciowego G1 rutera czyli 192.168.0.1. Wynika to z faktu że komputer K2 jest podłączony do tego interfejsu co oznacza że w ramach swojej podsieci komunikuje się z ruterem właśnie za pośrednictwem tego adresu IP. W sieciach komputerowych brama domyślna to adres urządzenia sieciowego zazwyczaj rutera który umożliwia komunikację z innymi sieciami. Praktyczne znaczenie jest takie że każda komunikacja spoza lokalnej podsieci wymaga przejścia przez ten punkt. Ważne jest aby adres bramy należał do tej samej podsieci co urządzenia które będzie obsługiwać co w tym przypadku potwierdzają odpowiednie wpisy IP i maski. W praktyce poprawne ustawienie bramy domyślnej jest kluczowe w celu zapewnienia poprawnej komunikacji w sieci lokalnej oraz poza nią. Zrozumienie zasady działania bramy domyślnej pomaga w konfiguracji i diagnozowaniu problemów sieciowych oraz jest zgodne z najlepszymi praktykami w zarządzaniu sieciami komputerowymi.

Pytanie 9

Adres IP 192.168.2.0/24 został podzielony na 8 podsieci. Jaką maskę należy zastosować dla tych nowych podsieci?

A. 255.255.255.240
B. 255.255.255.192
C. 255.255.255.128
D. 255.255.255.224
Wybór maski 255.255.255.192 nie jest poprawny, ponieważ nie odpowiada wymaganiom podziału sieci 192.168.2.0/24 na 8 podsieci. Maska 255.255.255.192, co odpowiada notacji /26, pozwala na utworzenie 4 podsieci (2^2 = 4), a nie 8. Oznacza to, że ten wybór nie zaspokaja wymagań podziału, które potrzebują 3 dodanych bitów do adresacji. Wybór maski 255.255.255.240 również jest błędny, ponieważ prowadzi do uzyskania 16 podsieci (2^4 = 16), co jest nadmiarem w stosunku do wymaganych 8 podsieci; to z kolei zbyt mocno zmniejsza dostępność adresów IP w każdej podsieci. Ostatnia odpowiedź, 255.255.255.128, również nie jest odpowiednia, ponieważ znowu dzieli sieć na 2 podsieci, co jest znacznie poniżej wymaganej liczby. Wybór odpowiedniej maski jest kluczowy w projektowaniu sieci, a błędne obliczenia mogą prowadzić do problemów z alokacją adresów IP oraz z zarządzaniem ruchem sieciowym. Takie pomyłki ilustrują typowy błąd myślowy, polegający na skupieniu się na liczbie podsieci bez uwzględnienia ich faktycznej pojemności. Dlatego ważne jest, aby dobrze rozumieć strukturę adresów IP oraz zasady związane z maskami podsieci, co jest kluczowe dla każdej osoby pracującej w dziedzinie sieci komputerowych.

Pytanie 10

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. oktalnej
B. binarnej
C. dziesiętnej
D. heksadecymalnej
Adres AC-72-89-17-6E-B2 to przykład adresu MAC, który jest zapisany w formacie heksadecymalnym. W systemie heksadecymalnym każda cyfra może przyjmować wartości od 0 do 9 oraz od A do F, co pozwala na reprezentację 16 różnych wartości. W kontekście adresów MAC, każda para heksadecymalnych cyfr reprezentuje jeden bajt, co jest kluczowe w identyfikacji urządzeń w sieci. Adresy MAC są używane w warstwie łącza danych modelu OSI i są istotne w takich protokołach jak Ethernet. Przykładowe zastosowanie adresów MAC to filtrowanie adresów w routerach, co pozwala na kontrolę dostępu do sieci. Zrozumienie systemów liczbowych, w tym heksadecymalnego, jest istotne dla profesjonalistów w dziedzinie IT, ponieważ wiele protokołów i standardów, takich jak IPv6, stosuje heksadecymalną notację. Ponadto, dobra znajomość adresowania MAC jest niezbędna przy rozwiązywaniu problemów z sieciami komputerowymi, co czyni tę wiedzę kluczową w pracy administratorów sieci.

Pytanie 11

Która funkcja serwera Windows umożliwia użytkownikom końcowym sieci pokazanej na rysunku dostęp do Internetu?

Ilustracja do pytania
A. Usługa rutingu
B. Usługa dzielenia
C. Usługa LDS
D. Usługa drukowania
Usługa rutingu na serwerze Windows umożliwia przesyłanie danych między różnymi sieciami, co jest kluczowe dla zapewnienia użytkownikom dostępu do Internetu. Dzięki tej usłudze serwer działa jako router, który kieruje pakiety danych pomiędzy siecią lokalną a globalną siecią Internet. Ruting jest kluczowy w kontekście dużych sieci, w których konieczne jest zarządzanie ruchem sieciowym, zapewniając optymalną wydajność i bezpieczeństwo. Implementacja rutingu w Windows Server opiera się na protokołach takich jak RIP czy OSPF, które pomagają w dynamicznej aktualizacji tras. Administracja usługą rutingu obejmuje konfigurację interfejsów sieciowych, tabel routingu oraz polityk trasowania, co jest zgodne z najlepszymi praktykami branżowymi. Praktyczne zastosowanie takiej usługi obejmuje złożone sieci korporacyjne, gdzie kilka oddzielnych sieci LAN musi współdzielić wspólne połączenie do Internetu. Dzięki rutingowi nie tylko możliwe jest efektywne zarządzanie ruchem, ale także implementacja zaawansowanych funkcji takich jak NAT, które dodatkowo zwiększają bezpieczeństwo i elastyczność infrastruktury sieciowej. Wiedza o usługach rutingu pozwala inżynierom sieciowym projektować skalowalne i niezawodne sieci oparte na Windows Server.

Pytanie 12

Jakie jest rozwinięcie skrótu, który odnosi się do usług mających na celu m.in. nadawanie priorytetów przesyłanym pakietom oraz zarządzanie przepustowością w sieci?

A. ARP
B. QoS
C. STP
D. PoE
W niektórych swoich odpowiedziach nie trzymasz się tematu zarządzania priorytetami i przepustowości w sieciach komputerowych. Na przykład, ARP, czyli Address Resolution Protocol, to protokół, który mapuje adresy IP na MAC. To ważne dla lokalnej sieci, bo urządzenia muszą się komunikować, ale to nie ma nic wspólnego z zarządzaniem jakością usług. STP, czyli Spanning Tree Protocol, służy do zapobiegania pętlom w sieciach Ethernet - to też jest ważne, ale nie zajmuje się priorytetowaniem danych. A PoE, czyli Power over Ethernet, pozwala przesyłać energię elektryczną przez kable Ethernet, co jest super w przypadku kamer czy punktów dostępu, ale z QoS nie ma nic wspólnego. Dlatego twoje odpowiedzi nie są związane z QoS i jej zastosowaniami, co może prowadzić do nieporozumień w nowoczesnych sieciach komputerowych.

Pytanie 13

Jakie zadanie realizuje układ oznaczony strzałką na diagramie karty graficznej?

Ilustracja do pytania
A. Oblicza kolory każdego wyświetlanego piksela
B. Określa widoczność oraz nakładanie się obiektów na ekranie
C. Oblicza wygląd i położenie wielokątów, z których zbudowany jest obiekt
D. Realizuje obliczenia oświetlenia, uwzględniając lokalizację źródła światła
Układ zaznaczony strzałką to silnik geometryczny na karcie graficznej który pełni kluczową rolę w obliczaniu wyglądu i położenia wielokątów z których zbudowany jest obiekt w grafice 3D. Silnik geometryczny przetwarza dane dotyczące wierzchołków i krawędzi w przestrzeni trójwymiarowej co jest pierwszym etapem w renderowaniu grafiki 3D. Umożliwia to przekształcenia liniowe jak translacja rotacja czy skalowanie oraz operacje bardziej złożone jak rzutowanie perspektywiczne. Dzięki temu możliwe jest uzyskanie realistycznych efektów wizualnych w grach komputerowych symulacjach czy wizualizacjach inżynieryjnych. Silnik geometryczny współpracuje z układem renderującym który zajmuje się dalszym etapem przetwarzania jak rasteryzacja. Współczesne karty graficzne stosują zaawansowane techniki jak teselacja czy cieniowanie wierzchołków co dodatkowo zwiększa poziom realizmu i szczegółowości generowanego obrazu. Poprawne zrozumienie funkcji silnika geometrycznego jest kluczowe dla optymalizacji wydajności i jakości grafiki co jest standardem w branży gier komputerowych i grafiki 3D.

Pytanie 14

Po zainstalowaniu systemu Linux, użytkownik pragnie skonfigurować kartę sieciową poprzez wprowadzenie ustawień dotyczących sieci. Jakie działanie należy podjąć, aby to osiągnąć?

A. /etc/profile
B. /etc/resolv.configuration
C. /etc/network/interfaces
D. /etc/shadow
Poprawna odpowiedź to /etc/network/interfaces, ponieważ jest to główny plik konfiguracyjny używany w wielu dystrybucjach systemu Linux do zarządzania ustawieniami sieciowymi. W tym pliku użytkownik może definiować różne interfejsy sieciowe, przypisywać im adresy IP, maski podsieci oraz inne istotne parametry, takie jak brama domyślna i serwery DNS. Na przykład, aby skonfigurować interfejs eth0 z adresem IP 192.168.1.10, użytkownik wpisze: 'iface eth0 inet static' oraz 'address 192.168.1.10'. Warto zaznaczyć, że w zależności od wybranej dystrybucji, dostępne są różne narzędzia do edytowania tego pliku, takie jak nano czy vim. Praktyczna znajomość edycji pliku /etc/network/interfaces jest kluczowa dla administratorów systemu, którzy muszą zarządzać połączeniami sieciowymi w sposób wydajny i zgodny z najlepszymi praktykami branżowymi. Użytkowanie tego pliku wpisuje się w standardy konfiguracji systemów Unix/Linux, co czyni go niezbędnym narzędziem do zrozumienia i zarządzania infrastrukturą sieciową.

Pytanie 15

Aby uzyskać listę procesów aktualnie działających w systemie Linux, należy użyć polecenia

A. who
B. show
C. dir
D. ps
Polecenie 'ps' w systemie Linux jest kluczowym narzędziem do monitorowania i zarządzania procesami działającymi w systemie. Jego pełna forma to 'process status', a jego zadaniem jest wyświetlenie informacji o aktualnie uruchomionych procesach, takich jak ich identyfikatory PID, wykorzystanie pamięci, stan oraz czas CPU. Dzięki możliwościom filtrowania i formatowania wyników, 'ps' jest niezwykle elastyczne, co czyni je niezastąpionym narzędziem w codziennej administracji systemami. Na przykład, użycie polecenia 'ps aux' pozwala uzyskać pełen widok na wszystkie procesy, w tym te uruchomione przez innych użytkowników. W praktyce, administratorzy często łączą 'ps' z innymi poleceniami, takimi jak 'grep', aby szybko zidentyfikować konkretne procesy, co jest zgodne z dobrymi praktykami zarządzania systemami. Zrozumienie i umiejętność korzystania z 'ps' jest fundamentem dla każdego, kto zajmuje się administracją systemów Linux, a jego znajomość jest kluczowym elementem w rozwiązywaniu problemów związanych z wydajnością czy zarządzaniem zasobami.

Pytanie 16

Jakie oznaczenie odnosi się do normy dotyczącej okablowania strukturalnego?

A. ISO 11801
B. EIA/TIA 568A
C. PN-EN 50173-1:2004
D. EN 50173
EIA/TIA 568A to taki standard, który mówi, jak dobrze instalować okablowanie w budynkach. Dzięki niemu mamy jasne wytyczne, jak projektować i układać kable oraz inne części systemu telekomunikacyjnego. Przykładem może być instalacja sieci Ethernet w biurze, gdzie ważne jest, żeby wszystko działało sprawnie. Ten standard określa, jakie kable używać, jak je układać oraz zasady testowania i certyfikacji systemów okablowania. W praktyce, korzystanie z EIA/TIA 568A sprawia, że wszystko działa lepiej i urządzenia komunikują się ze sobą bezproblemowo. To jest mega istotne, bo technologia wciąż się rozwija. Dla inżynierów i techników zajmujących się sieciami, znajomość tego standardu to podstawa, bo wpływa na to, jak trwałe i wydajne są nasze systemy telekomunikacyjne.

Pytanie 17

Jaką drukarkę powinna nabyć firma, która potrzebuje urządzenia do tworzenia trwałych kodów kreskowych oraz etykiet na folii i tworzywach sztucznych?

A. Termotransferową
B. Mozaikową
C. Termiczną
D. Igłową
Drukarka termotransferowa jest idealnym wyborem do drukowania trwałych kodów kreskowych oraz etykiet na folii i tworzywach sztucznych. Technologia termotransferowa polega na wykorzystaniu taśmy barwiącej, która pod wpływem wysokiej temperatury przenosi pigment na materiał etykiety. Dzięki temu uzyskiwane są wyraźne, trwałe i odporne na działanie różnych czynników zewnętrznych wydruki. W praktycznych zastosowaniach, takie etykiety są często używane w magazynach, logistyce, przemyśle spożywczym oraz farmaceutycznym, gdzie wymagane są wysokie standardy jakości i trwałości. Termotransferowe drukarki są również kompatybilne z różnymi rodzajami materiałów, co czyni je wszechstronnym rozwiązaniem. Dodatkowo, dzięki możliwości regulacji rozdzielczości druku, można uzyskiwać kody kreskowe o różnym poziomie szczegółowości, co jest kluczowe w kontekście skanowania i identyfikacji. Wybór drukarki termotransferowej zapewnia również zgodność z normami branżowymi, co podkreśla jej znaczenie w profesjonalnym użytkowaniu.

Pytanie 18

Serwer DNS pełni rolę

A. dynamicznego przydzielania adresów IP
B. usług terminalowych
C. zdalnego i szyfrowanego dostępu
D. który umożliwia przekształcenie nazw mnemonicznych (opisowych) na odpowiadające im adresy IP
Serwer DNS (Domain Name System) odgrywa kluczową rolę w internecie, umożliwiając konwersję nazw domenowych na odpowiadające im adresy IP, co jest niezbędne do komunikacji w sieci. Gdy użytkownik wpisuje adres strony internetowej w przeglądarkę, serwer DNS przetwarza tę nazwę na jej numeryczny odpowiednik, który jest zrozumiały dla maszyn. Przykładowo, podczas wpisywania www.example.com, serwer DNS przekształca tę nazwę na adres IP, np. 192.0.2.1, co pozwala na nawiązanie połączenia z odpowiednim serwerem. To przekształcenie jest realizowane poprzez hierarchiczny system serwerów DNS, które współpracują ze sobą, umożliwiając szybkie i efektywne odnajdywanie żądanych zasobów. Zgodnie z najlepszymi praktykami, konfiguracja serwera DNS powinna być przeprowadzana z uwzględnieniem bezpieczeństwa, aby zapobiegać atakom, takim jak spoofing DNS. W kontekście rozwoju technologicznym, znaczenie serwerów DNS rośnie, ponieważ coraz więcej usług internetowych opiera się na niezawodnym i szybkim dostępie do danych, co wymaga efektywnego zarządzania nazwami domenowymi i adresami IP.

Pytanie 19

Który z wymienionych parametrów procesora AMD APU A10 5700 3400 nie ma bezpośredniego wpływu na jego wydajność?

Częstotliwość3400 MHz
Proces technologiczny32 nm
Architektura64 bit
Ilość rdzeni4
Ilość wątków4
Pojemność pamięci L1 (instrukcje)2x64 kB
Pojemność pamięci L1 (dane)4x16 kB
Pojemność Pamięci L22x2 MB

A. Częstotliwość
B. Liczba rdzeni
C. Pojemność pamięci
D. Proces technologiczny
Częstotliwość procesora bezpośrednio wpływa na jego szybkość działania ponieważ określa ile cykli procesor może wykonać w ciągu sekundy co oznacza że wyższe taktowanie pozwala na szybsze wykonywanie operacji. Ilość rdzeni również ma kluczowe znaczenie dla wydajności szczególnie w zadaniach równoległych takich jak gry czy renderowanie wideo. Większa liczba rdzeni pozwala na jednoczesne przetwarzanie większej liczby wątków co przekłada się na zwiększoną wydajność w aplikacjach zoptymalizowanych pod kątem wielowątkowości. Pojemność pamięci RAM ogólnie nie dotyczy procesora ale jest kluczowa dla wydajności systemu gdyż od niej zależy jak dużo danych procesor może przetwarzać bez konieczności dostępu do wolniejszej pamięci masowej. Często mylona jest z pamięcią podręczną procesora która jest wewnętrzną pamięcią wykorzystywaną do szybkiego dostępu do często używanych danych. Typowym błędem jest przypisywanie większego wpływu procesowi technologicznemu na szybkość działania podczas gdy jego rola jest bardziej związana z energetyczną efektywnością i możliwościami chłodzenia co ma znaczenie drugorzędne w kontekście surowej wydajności obliczeniowej. Prawidłowe zrozumienie tych parametrów jest kluczowe dla optymalizacji wydajności systemów komputerowych i pozwala na dokonanie świadomego wyboru przy zakupie sprzętu IT odpowiedniego do specyficznych wymagań użytkownika.

Pytanie 20

Uruchomienie polecenia msconfig w systemie Windows

A. zarządzanie zadaniami
B. zarządzanie plikami
C. sekcja ustawień
D. narzędzie konfiguracji systemu
Odpowiedzi, które wskazują na inne funkcje systemu Windows, takie jak panel sterowania, menedżer zadań czy menedżer plików, nie są związane z poleceniem msconfig. Panel sterowania skupia się na zarządzaniu ustawieniami systemowymi, takimi jak dodawanie i usuwanie programów, modyfikacja ustawień sieciowych czy konfiguracja sprzętu. Jest to narzędzie bardziej ogólne, które nie koncentruje się na aspektach związanych z rozruchem systemu. Menedżer zadań, z kolei, jest używany do monitorowania bieżących procesów, zarządzania uruchomionymi aplikacjami i kończenia nieodpowiadających programów, ale nie oferuje opcji konfiguracji startowych. Menedżer plików (Eksplorator Windows) jest narzędziem do zarządzania plikami i folderami w systemie, co również nie ma związku z zarządzaniem usługami czy programami startowymi. Typowe błędy myślowe prowadzące do tych nietrafnych odpowiedzi często wynikają z mylenia funkcji narzędzi systemowych. Użytkownicy mogą nie dostrzegać różnic między nimi, co skutkuje błędną interpretacją ich roli. Warto podkreślić, że zrozumienie specyfiki każdego z tych narzędzi jest kluczowe do efektywnego zarządzania systemem Windows i jego optymalizacji. Powodzenie w diagnostyce problemów z systemem wymaga znajomości właściwych narzędzi, ich zastosowań oraz umiejętności ich użycia.

Pytanie 21

Topologia fizyczna sieci komputerowej przedstawiona na ilustracji to topologia

Ilustracja do pytania
A. gwiazdy rozszerzonej
B. hierarchiczna
C. gwiazdy
D. magistrali
Topologia hierarchiczna, inaczej zwana topologią drzewa, jest jedną z najczęściej spotykanych struktur w sieciach komputerowych, szczególnie w większych organizacjach. Charakteryzuje się ona rozbudową w postaci hierarchii urządzeń sieciowych, gdzie każdy węzeł centralny jest połączony z kilkoma urządzeniami podrzędnymi. W praktyce topologia hierarchiczna umożliwia łatwe zarządzanie dużymi sieciami dzięki czytelnej strukturze i możliwości centralnego administrowania. Jest to powszechnie stosowane podejście w centrach danych, gdzie serwery są zorganizowane według poziomów hierarchii, co ułatwia skalowanie i integrację z różnymi systemami. Warto zauważyć, że topologia ta wspiera redundancję i skalowalność, co jest kluczowe w utrzymaniu ciągłości działania firmy. Stosowanie topologii hierarchicznej jest zgodne z najlepszymi praktykami branżowymi, zapewniającymi nie tylko optymalizację pracy sieci, ale także jej bezpieczeństwo oraz możliwość implementacji zaawansowanych polityk dostępu i monitorowania ruchu. Jest to rozwiązanie rekomendowane przez wielu producentów sprzętu sieciowego, jak Cisco czy Juniper.

Pytanie 22

Na przedstawionym rysunku znajduje się fragment dokumentacji technicznej płyty głównej GA-K8NF-9-RH rev. 2.x. Z tego wynika, że maksymalna liczba kart rozszerzeń, które można zamontować (pomijając interfejs USB), wynosi

Ilustracja do pytania
A. 6
B. 2
C. 5
D. 3
Poprawna odpowiedź to 6 ponieważ na płycie głównej GA-K8NF-9-RH rev. 2.x dostępne są złącza rozszerzeń umożliwiające zamontowanie do sześciu kart rozszerzeń. Dokumentacja techniczna wskazuje na obecność jednego złącza PCI Express x16 które jest typowo wykorzystywane do instalacji kart graficznych co w praktyce umożliwia korzystanie z najnowszych technologii związanych z wyświetlaniem obrazu i obsługą multimediów. Dodatkowo dostępne są dwa złącza PCI Express x1 oraz trzy złącza PCI co daje łącznie sześć miejsc na różne karty rozszerzeń takie jak karty dźwiękowe sieciowe czy kontrolery pamięci masowej. Ważne jest aby zwrócić uwagę na standardy jak PCI Express który oferuje szybsze przesyłanie danych w porównaniu do starszego standardu PCI co jest korzystne dla wydajności systemu. W praktyce takie możliwości rozbudowy pozwalają na znaczną elastyczność w dostosowywaniu komputera do indywidualnych potrzeb użytkownika jak również na przyszłe modernizacje sprzętu co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 23

Na ilustracji zaprezentowano porty, które są częścią karty

Ilustracja do pytania
A. sieciowej
B. faksmodemowej
C. dźwiękowej
D. telewizyjnej
Odpowiedzi na pytanie sugerują różne typy kart, które można spotkać w komputerach, jednak każda z nich pełni odmienną funkcję. Karta faksmodemowa jest urządzeniem umożliwiającym przesyłanie danych przez linię telefoniczną i używa portów RJ-11, które są znacznie mniejsze od gniazd RJ-45 stosowanych w kartach sieciowych. Modemy coraz rzadziej spotykamy we współczesnych komputerach, głównie ze względu na rozwój szerokopasmowego dostępu do internetu. Karta dźwiękowa natomiast posiada różne złącza, takie jak porty mini-jack czy RCA, które służą do podłączania mikrofonu, słuchawek oraz głośników. Karty dźwiękowe odpowiadają za przetwarzanie i generowanie dźwięku, co jest niezbędne w aplikacjach multimedialnych, ale nie jest związane z komunikacją sieciową. Karta telewizyjna, używana do odbioru sygnału TV, wyposażona jest w gniazda antenowe i ewentualnie porty do podłączenia dekoderów. Umożliwia oglądanie telewizji na komputerze i rejestrację programów, co również nie ma związku z funkcjami sieciowymi. Błędne przypisanie tych funkcji wynika najczęściej z mylenia fizycznych cech gniazd oraz ich funkcji, dlatego ważne jest, aby rozumieć różnice w zastosowaniach i budowie każdego z tych urządzeń. Kluczowe jest dokładne rozpoznanie typów złączy i ich przeznaczenia w kontekście ich fizycznych i funkcjonalnych specyfikacji, aby poprawnie identyfikować sprzęt komputerowy i jego aplikacje w praktyce IT.

Pytanie 24

Co oznacza skrót "DNS" w kontekście sieci komputerowych?

A. Data Network Service
B. Digital Network Stream
C. Domain Name System
D. Dynamic Network Server
Skrót "DNS" oznacza Domain Name System, czyli system nazw domenowych. Jest to kluczowy element infrastruktury internetowej, który umożliwia przekształcanie przyjaznych dla człowieka nazw domenowych, takich jak przykład.com, na adresy IP, które są zrozumiałe dla komputerów. Dzięki DNS użytkownicy Internetu mogą łatwo uzyskiwać dostęp do stron internetowych, wpisując prostą nazwę zamiast zapamiętywania skomplikowanych adresów IP. System DNS działa na zasadzie hierarchicznej bazy danych rozproszonej, co oznacza, że dane są przechowywane w różnych lokalizacjach, co zapewnia skalowalność i redundancję. Każde zapytanie DNS jest przetwarzane przez szereg serwerów, począwszy od lokalnego serwera DNS, przez serwery główne, aż po serwery odpowiedzialne za daną domenę. Dzięki temu, DNS jest skalowalnym i niezawodnym rozwiązaniem, które umożliwia płynne działanie Internetu. Zastosowanie DNS obejmuje również funkcje związane z bezpieczeństwem, takie jak DNSSEC, które dodaje warstwę zabezpieczeń poprzez cyfrowe podpisywanie danych DNS, zapobiegając atakom typu man-in-the-middle.

Pytanie 25

Który z podanych adresów IPv4 należy do kategorii B?

A. 128.100.100.10
B. 192.168.1.10
C. 224.100.10.10
D. 10.10.10.10
Adres IPv4 128.100.100.10 należy do klasy B, co wynika z jego pierwszego oktetu. Klasa B obejmuje adresy, których pierwszy oktet mieści się w przedziale od 128 do 191. W praktyce, klasyfikacja adresów IP jest kluczowym elementem w projektowaniu sieci komputerowych, ponieważ pozwala na efektywne zarządzanie przestrzenią adresową. Adresy klasy B są często wykorzystywane w średnich i dużych sieciach, ponieważ oferują możliwość stworzenia do 65 536 adresów IP w ramach jednej sieci (przy użyciu maski podsieci 255.255.0.0). Przykładem zastosowania adresów klasy B jest ich wykorzystanie w przedsiębiorstwach, które potrzebują dużej liczby adresów dla swoich urządzeń, takich jak komputery, serwery, drukarki i inne. W kontekście standardów, klasyfikacja adresów IP opiera się na protokole Internet Protocol (IP), który jest kluczowym elementem w architekturze Internetu. Warto zaznaczyć, że klasy adresów IP są coraz mniej używane na rzecz CIDR (Classless Inter-Domain Routing), który oferuje większą elastyczność w alokacji adresów. Niemniej jednak, zrozumienie klasyfikacji jest nadal istotne dla profesjonalistów zajmujących się sieciami.

Pytanie 26

Aby przeprowadzić aktualizację zainstalowanego systemu operacyjnego Linux Ubuntu, należy wykorzystać komendę

A. apt-get upgrade albo apt upgrade
B. kernel update
C. system update
D. yum upgrade
Odpowiedzi 'kernel update', 'system update' i 'yum upgrade' to nie to, czego szukamy, kiedy mówimy o aktualizacji systemu Ubuntu. 'Kernel update' to nie jest konkretne polecenie w Linuxie, a sama aktualizacja jądra wymaga dodatkowych kroków i nie robi się jej tak po prostu. Dla Ubuntu, które opiera się na Debianie, powinno się używać 'apt-get' lub 'apt', a nie tych ogólnych fraz. 'System update' to pojęcie bardzo ogólne, które nie wskazuje konkretnego polecenia ani narzędzia – to może wprowadzać w błąd. Z kolei 'yum upgrade' to coś, co działa w dystrybucjach na bazie Red Hat, jak CentOS czy Fedora, a nie w Ubuntu. Ważne jest, żeby wiedzieć, jak te systemy zarządzania pakietami się różnią, bo to kluczowe w administrowaniu systemem. Jeśli nie zwracasz na to uwagi, mogą się pojawić błędy przy aktualizacjach, co może zaszkodzić działaniu programów i narazić system na różne niebezpieczeństwa.

Pytanie 27

Jaką maksymalną prędkość transferu danych pozwala osiągnąć interfejs USB 3.0?

A. 120 MB/s
B. 4 GB/s
C. 5 Gb/s
D. 400 Mb/s
Wybór prędkości transferu z poniższych opcji nie prowadzi do prawidłowego wniosku o możliwościach interfejsu USB 3.0. Przykładowo, 120 MB/s jest znacznie poniżej specyfikacji USB 3.0 i odpowiada wydajności interfejsów z wcześniejszych wersji, takich jak USB 2.0. Tego rodzaju błędne wyobrażenia mogą wynikać z niewłaściwego porównania prędkości transferu, gdzie nie uwzględnia się konwersji jednostek – prędkości wyrażone w megabajtach na sekundę (MB/s) różnią się od megabitów na sekundę (Mb/s). Dla przykładu, 400 Mb/s to tylko około 50 MB/s, co również nie osiąga specyfikacji USB 3.0. W przypadku 4 GB/s, choć wydaje się to atrakcyjne, przekracza to możliwości USB 3.0, które maksymalizuje swoje transfery do 5 Gb/s, co oznacza, że nie jest to opcja realistyczna. Zrozumienie różnicy między jednostkami oraz rzeczywistymi możliwościami technologii USB jest kluczowe dla prawidłowego wykonania zastosowań w praktyce. Użytkownicy często mylą maksymalne wartości przesyłania danych z rzeczywistymi prędkościami, które mogą być ograniczone przez inne czynniki, takie jak jakość kabli, zastosowane urządzenia czy też warunki środowiskowe. Dlatego ważne jest, aby przed podjęciem decyzji o zakupie lub użyciu danego sprzętu z interfejsem USB, dokładnie zrozumieć jego specyfikację oraz możliwości.

Pytanie 28

Jakie oprogramowanie należy zainstalować, aby serwer Windows mógł obsługiwać usługi katalogowe?

A. rolę serwera Web
B. rolę serwera DHCP
C. usługi zarządzania prawami
D. kontroler domeny
Kontroler domeny jest kluczowym elementem infrastruktury sieciowej opartej na systemach Windows, który zarządza usługami katalogowymi w sieci. Głównym zadaniem kontrolera domeny jest przechowywanie informacji o członkach domeny, w tym komputerach i użytkownikach, oraz zarządzanie ich uwierzytelnianiem i autoryzacją. Dzięki Active Directory, które jest głównym komponentem usługi katalogowej, administratorzy mogą zarządzać dostępem do zasobów sieciowych, co jest niezbędne w każdej organizacji. Przykładem zastosowania kontrolera domeny w praktyce może być sytuacja, gdy pracownik loguje się do swojego komputera w sieci korporacyjnej; kontroler domeny weryfikuje jego dane uwierzytelniające i przyznaje dostęp do odpowiednich zasobów. Zgodnie z najlepszymi praktykami, w większych organizacjach zaleca się posiadanie co najmniej dwóch kontrolerów domeny dla zapewnienia redundancji i zwiększonej dostępności usług. Dzięki temu organizacja może zminimalizować ryzyko utraty dostępu do krytycznych zasobów w przypadku awarii jednego z kontrolerów.

Pytanie 29

W klasycznym adresowaniu, adres IP 74.100.7.8 przynależy do

A. klasy B
B. klasy D
C. klasy A
D. klasy C
Adres IP 74.100.7.8 należy do klasy A, ponieważ jego pierwszy oktet (74) mieści się w zakresie od 1 do 126. Klasa A przeznaczona jest dla dużych sieci, w których liczba hostów może wynosić do 16 milionów na jednej sieci. Adresy IP w klasie A charakteryzują się tym, że ich maska podsieci wynosi zazwyczaj 255.0.0.0, co oznacza, że pierwsze 8 bitów (1 oktet) jest wykorzystywane do identyfikacji sieci, a pozostałe 24 bity do identyfikacji hostów. Przykładowo, organizacje takie jak wielkie korporacje czy dostawcy usług internetowych mogą korzystać z adresów klasy A, aby obsługiwać ogromne bazy klientów. Wiedza na temat klasyfikacji adresów IP jest kluczowa w projektowaniu i zarządzaniu sieciami komputerowymi, co potwierdzają standardy RFC 791 oraz RFC 950. Zrozumienie tych podstawowych zasad adresowania IP pozwala na efektywne planowanie i wdrażanie infrastruktury sieciowej.

Pytanie 30

Oblicz całkowity koszt kabla UTP Cat 6, który służy do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia długość między punktem abonenckim a punktem dystrybucyjnym wynosi 8m oraz że cena brutto za 1m kabla to 1zł. W obliczeniach uwzględnij dodatkowy zapas 2m kabla dla każdego punktu abonenckiego.

A. 50 zł
B. 40 zł
C. 45 zł
D. 32 zł
Błędne odpowiedzi często wynikają z niezrozumienia zasad obliczania długości kabla oraz zapasu, który powinien być uwzględniony w projektach instalacyjnych. Na przykład, jeśli ktoś obliczy koszt na podstawie samej długości kabla bez dodawania zapasu, może dojść do wniosku, że potrzebna jest tylko długość kabla do połączenia, co w przypadku podanych 5 punktów abonenckich w odległości 8m od punktu dystrybucyjnego daje 40m. Takie podejście jest niewystarczające, ponieważ nie bierze pod uwagę nieprzewidzianych okoliczności, jak zmiany w układzie kabli, konieczność łączenia kabli czy awarie, które mogą wymagać dodatkowej długości. Dodatkowo, niektórzy mogą podać błędne wartości związane z ceną za metr kabla, co również wprowadza w błąd przy obliczeniach kosztów. W kontekście instalacji okablowania, normy i najlepsze praktyki zalecają dodawanie zapasu, który powinien wynosić co najmniej 20% całkowitej długości kabla. Dzięki temu unikamy kosztownych poprawek i zapewniamy, że instalacja będzie wystarczająco elastyczna. Dlatego warto zwracać uwagę na takie szczegóły, ponieważ pomijanie ich może prowadzić do niedoszacowania kosztów i problemów w realizacji projektu.

Pytanie 31

Jak wielu hostów można maksymalnie zaadresować w sieci lokalnej, mając do dyspozycji jeden blok adresów klasy C protokołu IPv4?

A. 512
B. 255
C. 510
D. 254
Wybór odpowiedzi 255, 510 lub 512 jest wynikiem nieporozumienia dotyczącego adresacji w sieciach klasy C. Adresy IPv4 w klasie C mają 24 bity przeznaczone na identyfikację sieci oraz 8 bitów na identyfikację hostów, co daje łącznie 256 adresów. Osoby, które wybrały odpowiedź 255, mogą mieć na myśli całkowitą liczbę dostępnych adresów, ale nie uwzględniają faktu, że dwa adresy są zarezerwowane: jeden dla adresu sieci i jeden dla adresu rozgłoszeniowego. W przypadku odpowiedzi 510 i 512, widoczna jest ignorancja podstawowych zasad dotyczących adresacji IP. Oznaczenia te sugerują, że użytkownicy nie rozumieją, że maksymalna liczba adresów IP, które można przydzielić hostom, jest ograniczona przez rezerwacje dla specjalnych adresów. W praktyce, przydzielanie adresów IP musi uwzględniać również dynamikę sieci, w tym zmiany w liczbie urządzeń podłączonych do sieci. Te zagadnienia są kluczowe w projektowaniu i zarządzaniu sieciami lokalnymi, a ich nieprawidłowe rozumienie może prowadzić do problemów z dostępnością usług czy konfliktami adresów. Stąd ważne jest, aby administratorzy sieci dokładnie rozumieli zasady adresacji IP zgodne z normami RFC, co pozwoli efektywnie zarządzać zasobami sieciowymi.

Pytanie 32

Jak określić długość prefiksu adresu sieci w adresie IPv4?

A. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
B. liczbę początkowych bitów mających wartość 1 w masce adresu IPv4
C. liczbę bitów o wartości 1 w części hosta adresu IPv4
D. liczbę bitów o wartości 0 w dwóch pierwszych oktetach adresu IPv4
Odpowiedź dotycząca liczby początkowych bitów mających wartość 1 w masce adresu IPv4 jest poprawna, ponieważ to właśnie te bity określają długość prefiksu adresu sieci. W kontekście adresacji IPv4, maska podsieci definiuje, która część adresu IP odnosi się do sieci, a która do hosta. Długość prefiksu, oznaczana zazwyczaj jako /n, wskazuje, ile bitów w masce ma wartość 1, co pozwala na zrozumienie rozmiaru i struktury danej sieci. Na przykład, maska 255.255.255.0 odpowiada prefiksowi /24, co oznacza, że pierwsze 24 bity są używane do adresowania sieci, a pozostałe 8 bitów do identyfikacji hostów. Używanie długości prefiksu jest standardem w praktyce zarządzania sieciami i jest zgodne z konwencjami opisanymi w dokumentach IETF, takich jak RFC 1918. Zrozumienie tego mechanizmu jest kluczowe dla efektywnego projektowania oraz implementacji infrastruktury sieciowej, a także dla rozwiązywania problemów związanych z adresowaniem i routingiem.

Pytanie 33

Jaką inną formą można zapisać 2^32 bajtów?

A. 2 GB
B. 8 GB
C. 4 GiB
D. 1 GiB
Wybór odpowiedzi, która nie jest poprawna, może wynikać z nieporozumienia dotyczącego różnic między bajtami, gigabajtami i gibibajtami. Odpowiedź 2 GB może być mylona z 2 GiB, jednak warto zauważyć, że 1 GB to 10^9 bajtów. Zatem 2 GB to 2 000 000 000 bajtów, co przekłada się na 1,86 GiB (2 000 000 000 / 1 073 741 824). Stąd wynika, że 2 GB to znacznie mniej niż 2^32 bajtów. Odpowiedź 8 GB również jest błędna, ponieważ 8 GB to 8 000 000 000 bajtów, co również nie odpowiada 2^32 bajtom. Z kolei 4 GiB, choć wydaje się bliskie poprawnej odpowiedzi, jest mylone z 4 GB, co jest niepoprawne. 4 GiB, jak wcześniej wyjaśniono, wynika z faktu, że 1 GiB = 2^30 bajtów, a zatem 4 GiB = 4 * 1 073 741 824 bajtów, co daje 4 294 967 296 bajtów, czyli 2^32 bajtów. Zrozumienie różnicy między tymi jednostkami jest kluczowe w kontekście zarządzania danymi oraz ich transferu, na przykład w systemach operacyjnych oraz w inżynierii oprogramowania, gdzie precyzyjne użycie jednostek ma wpływ na wydajność oraz zgodność z normami.

Pytanie 34

Jaką długość w bitach ma adres logiczny IPv6?

A. 16
B. 128
C. 64
D. 32
Odpowiedzi, które wskazują na 16, 32 lub 64 bity jako długość adresu logicznego IPv6, opierają się na błędnych założeniach dotyczących architektury protokołów internetowych. 16 bitów odnosi się do bardzo ograniczonej liczby adresów, która byłaby niewystarczająca w kontekście współczesnych potrzeb internetowych, zwłaszcza z uwagi na rozwój technologii takich jak IoT. 32 bity, jak w IPv4, również nie odpowiadają wymaganiom dzisiejszego internetu, gdzie liczba urządzeń znacznie przekracza liczbę dostępnych adresów IPv4. Wprowadzenie IPv6, które ma 128 bitów, zostało zaprojektowane tak, aby rozwiązać problem wyczerpywania się adresów. 64 bity, mimo że mogą sugerować większą przestrzeń adresową, nie są odpowiednie w kontekście IPv6. Typowym błędem myślowym jest mylenie długości adresu z innymi parametrami, takimi jak długość segmentu adresu w protokole TCP/IP. W praktyce, zrozumienie struktury adresowania IPv6 jest kluczowe dla inżynierów sieciowych, aby prawidłowo projektować architektury sieciowe oraz implementować usługi w sieciach opartych na nowych standardach.

Pytanie 35

Aby zainicjować w systemie Windows oprogramowanie do monitorowania wydajności komputera przedstawione na ilustracji, należy otworzyć

Ilustracja do pytania
A. gpedit.msc
B. perfmon.msc
C. taskschd.msc
D. devmgmt.msc
Pozostałe polecenia nie są związane z uruchamianiem narzędzia Monitor wydajności. Devmgmt.msc służy do uruchomienia Menedżera urządzeń, który jest używany do zarządzania sprzętem i sterownikami w systemie. Menedżer urządzeń pozwala użytkownikom instalować, aktualizować i diagnozować problemy ze sprzętem, ale nie oferuje funkcji monitorowania wydajności systemu. Polecenie gpedit.msc uruchamia Edytor lokalnych zasad grupy, które służy do zarządzania ustawieniami polityk bezpieczeństwa i konfiguracji systemu w środowiskach Windows, ale nie ma bezpośredniego związku z monitorowaniem wydajności. Taskschd.msc uruchamia Harmonogram zadań, który jest narzędziem do automatyzacji wykonywania zadań w systemie, takich jak uruchamianie programów w określonym czasie czy reagowanie na określone zdarzenia. Choć Harmonogram zadań może być używany do uruchamiania skryptów monitorujących wydajność, to sam w sobie nie jest narzędziem do tego dedykowanym. Błędne zrozumienie funkcji tych narzędzi może prowadzić do ich niewłaściwego zastosowania. Znajomość ich zastosowań i ograniczeń jest kluczowa dla efektywnego zarządzania systemem operacyjnym oraz minimalizowania ryzyka wystąpienia błędów związanych z wydajnością i bezpieczeństwem systemu. Prawidłowa identyfikacja i użycie odpowiednich narzędzi systemowych są istotne dla skutecznego zarządzania i monitorowania infrastruktury IT w środowiskach profesjonalnych.

Pytanie 36

W tabeli zaprezentowano parametry trzech dysków twardych w standardzie Ultra320 SCSI. Te dyski są w stanie osiągnąć maksymalny transfer wewnętrzny

Rotational Speed10,025 rpm
Capacity (Formatted)73.5GB147GB300GB
Number of Heads258
Number of Disks134
Internal Transfer RateUp to 132 MB/s
Interface Transfer RateNP/NC = 320MB/s, FC = 200MB/s
Buffer Size
Average Seek (Read/Write)4.5/5.0 ms
Track-to-Track Seek/Read/Write0.2ms/0.4ms
Maximum Seek (Read/Write)10/11 ms
Average Latency2.99 ms
Power Consumption (Idle)NP/NC = 9.5W, FC = 10.5W
Acoustic Noise3.4 bels
Shock - Operating/Non-Operating65G/225G 2ms

A. 320 GB/s
B. 320MB/S
C. 200MB/S
D. 132 MB/s
Odpowiedź 132 MB/s jest prawidłowa, ponieważ odnosi się do maksymalnego transferu wewnętrznego dysków standardu Ultra320 SCSI. Transfer wewnętrzny to prędkość, z jaką dysk twardy przesyła dane między talerzami a buforem dysku. Ważne jest, aby odróżnić transfer wewnętrzny od transferu interfejsu, który w przypadku Ultra320 SCSI wynosi do 320 MB/s, ale dotyczy komunikacji między dyskiem a kontrolerem. Transfer wewnętrzny jest zazwyczaj niższy, ponieważ zależy od fizycznych ograniczeń dysku, takich jak prędkość obrotowa talerzy i gęstość zapisu. Dyski o wyższym transferze wewnętrznym mogą być bardziej wydajne w stosunku do operacji odczytu i zapisu danych, co jest istotne w serwerach i systemach wymagających szybkiego dostępu do danych. Zrozumienie różnicy między transferem wewnętrznym a interfejsowym jest kluczowe dla optymalnego doboru dysków twardych do specyficznych zastosowań, takich jak bazy danych czy serwery plików, gdzie wydajność ma kluczowe znaczenie.

Pytanie 37

W nowoczesnych ekranach dotykowych działanie ekranu jest zapewniane przez mechanizm, który wykrywa zmianę

A. położenia dłoni dotykającej ekranu z wykorzystaniem kamery
B. oporu między przezroczystymi diodami wbudowanymi w ekran
C. pola elektromagnetycznego
D. pola elektrostatycznego
Ekrany dotykowe działające na zasadzie wykrywania pola elektrostatycznego są powszechnie stosowane w nowoczesnych urządzeniach mobilnych. Ta technologia polega na detekcji zmian w polu elektrycznym, które zachodzą, gdy palec użytkownika zbliża się do powierzchni ekranu. W momencie dotyku, zmieniają się wartości napięcia na powierzchni ekranu, co umożliwia precyzyjne określenie lokalizacji dotyku. Przykładem zastosowania tej technologii są smartfony i tablety, które korzystają z ekranów pojemnościowych. Dzięki nim, użytkownicy mogą korzystać z różnych gestów, takich jak przesuwanie, powiększanie czy zmniejszanie obrazu. Technologia ta jest zgodna z międzynarodowymi standardami dotyczącymi interfejsów użytkownika i ergonomii, co wpływa na jej popularność w branży elektroniki. Warto dodać, że pola elektrostatyczne są również wykorzystywane w innych urządzeniach, takich jak panele interaktywne w edukacji czy kioski informacyjne, podnosząc komfort i intuicyjność interakcji użytkownika z technologią.

Pytanie 38

Wykonanie na komputerze z systemem Windows kolejno poleceń ```ipconfig /release``` oraz ```ipconfig /renew``` umożliwi zweryfikowanie, czy usługa w sieci funkcjonuje poprawnie

A. serwera DNS
B. rutingu
C. Active Directory
D. serwera DHCP
Polecenia ipconfig /release i ipconfig /renew to naprawdę ważne narzędzia, jeśli chodzi o zarządzanie IP w systemie Windows, zwłaszcza w kontekście DHCP, czyli dynamicznego przydzielania adresów IP. Kiedy używasz ipconfig /release, komputer oddaje aktualny adres IP, co oznacza, że serwer DHCP może go przydzielić innym urządzeniom. Potem, jak użyjesz ipconfig /renew, zaczyna się proces ponownego uzyskiwania adresu IP od serwera. Jeśli wszystko działa jak należy, komputer dostaje nowy adres IP oraz inne ważne dane, jak maska podsieci czy serwery DNS. Używanie tych poleceń jest super przydatne, jeśli napotykasz problemy z połączeniem w sieci. Regularne ich stosowanie może pomóc w zarządzaniu adresami IP w twojej sieci, co jest naprawdę przydatne.

Pytanie 39

Komenda msconfig uruchamia w systemie Windows:

A. menedżera zadań
B. panel sterowania
C. narzędzie konfiguracji systemu
D. menedżera plików
Nieprawidłowe odpowiedzi sugerują nieporozumienia dotyczące funkcji i zastosowań różnych narzędzi w systemie Windows. Menedżer plików to aplikacja służąca do przeglądania, organizowania oraz zarządzania plikami na dysku, a nie do konfigurowania systemu. Użytkownicy mogą mylić ją z innymi narzędziami, co często prowadzi do błędnych wniosków. Panel sterowania natomiast to centralne miejsce zarządzania ustawieniami systemu, lecz nie posiada funkcjonalności dotyczącej uruchamiania systemu i zarządzania procesami startowymi. Również menedżer zadań nie jest narzędziem do konfiguracji systemu, lecz do monitorowania aktywnych procesów oraz ich wydajności, umożliwiając zamykanie aplikacji, które nie odpowiadają. Typowym błędem myślowym jest zakładanie, że każde narzędzie w systemie Windows ma podobną funkcjonalność, co prowadzi do zamieszania. Kluczowe jest, aby użytkownicy zrozumieli, że każde z tych narzędzi ma swoje specyficzne zadania, a korzystanie z nich w odpowiednich kontekstach jest niezbędne dla prawidłowego zarządzania systemem. Zrozumienie różnic między tymi narzędziami pozwala na bardziej efektywne wykorzystanie zasobów systemowych oraz na szybsze rozwiązywanie problemów.

Pytanie 40

Usługa w systemie Windows Server, która umożliwia zdalną instalację systemów operacyjnych na komputerach zarządzanych przez serwer, to

A. WDS
B. FTP
C. DFS
D. GPO
FTP (File Transfer Protocol) to protokół sieciowy używany do przesyłania plików pomiędzy komputerami, ale nie jest to narzędzie do zdalnej instalacji systemów operacyjnych. Jego głównym zastosowaniem jest transfer danych, co czyni go nieodpowiednim rozwiązaniem do złożonych procesów instalacji. DFS (Distributed File System) z kolei jest technologią, która umożliwia zarządzanie danymi rozproszonymi w różnych lokalizacjach, ale nie ma funkcji zdalnego uruchamiania instalacji systemów operacyjnych. GPO (Group Policy Object) to mechanizm, który pozwala na centralne zarządzanie ustawieniami konfiguracji systemu i aplikacji w środowisku Active Directory, jednak również nie umożliwia instalacji systemu operacyjnego. Problem z tymi odpowiedziami wynika z nieporozumienia dotyczącego funkcji tych technologii. Użytkownicy mogą błędnie przypuszczać, że FTP, DFS lub GPO mają zastosowanie w kontekście zdalnej instalacji systemów, podczas gdy są to narzędzia przeznaczone do innych celów. Kluczowe przy określaniu odpowiedniego rozwiązania jest zrozumienie, które technologie są zaprojektowane do specyficznych zadań, takich jak WDS do zdalnej instalacji systemów operacyjnych. Dlatego ważne jest dokładne zapoznanie się z funkcjami poszczególnych narzędzi, aby uniknąć mylnych wyborów w zarządzaniu infrastrukturą IT.