Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 15 maja 2025 21:51
  • Data zakończenia: 15 maja 2025 22:20

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Najlepszą metodą ochrony danych przedsiębiorstwa, którego biura znajdują się w różnych, odległych miejscach, jest wdrożenie

A. backupu w chmurze firmowej
B. kopii przyrostowych
C. kopii analogowych
D. kompresji strategicznych danych
Backup w chmurze firmowej stanowi najefektywniejsze zabezpieczenie danych dla firm z wieloma lokalizacjami, ponieważ umożliwia centralne zarządzanie danymi w sposób, który jest jednocześnie bezpieczny i dostępny. Wykorzystując chmurę, firmy mogą automatycznie synchronizować i archiwizować dane w czasie rzeczywistym, co minimalizuje ryzyko ich utraty. Przykładowo, w przypadku awarii lokalnego serwera, dane przechowywane w chmurze są nadal dostępne, co pozwala na szybkie przywrócenie operacyjności firmy. Standardy takie jak ISO/IEC 27001 w zakresie zarządzania bezpieczeństwem informacji podkreślają znaczenie regularnych kopii zapasowych oraz ich przechowywania w zewnętrznych, bezpiecznych lokalizacjach, co czyni backup w chmurze najlepszym rozwiązaniem z punktu widzenia zgodności z regulacjami branżowymi. Dodatkowo, chmura oferuje elastyczność w skalowaniu zasobów, co pozwala firmom na dostosowywanie swoich potrzeb w miarę ich rozwoju, a także na lepsze zarządzanie kosztami związanymi z infrastrukturą IT. W praktyce, wiele organizacji korzysta z rozwiązań takich jak Microsoft Azure, Amazon AWS czy Google Cloud, które zapewniają zaawansowane funkcje bezpieczeństwa oraz dostępności danych.

Pytanie 2

Jakie procesory można wykorzystać w zestawie komputerowym z płytą główną wyposażoną w gniazdo procesora typu Socket AM3?

A. Itanium
B. Core i7
C. Pentium D
D. Phenom II
W przypadku wyboru procesora Core i7, należy zauważyć, że jest to jednostka stworzona przez firmę Intel, która korzysta z zupełnie innego gniazda, takiego jak LGA 1156 czy LGA 2011 w zależności od konkretnej generacji. Procesory Intel z rodziny Core mają komplementarne architektury i funkcjonalności, które nie są kompatybilne z gniazdem Socket AM3, co czyni je niewłaściwym wyborem. Itanium, z kolei, to architektura opracowana przez Intela dla serwerów i aplikacji wymagających dużej mocy obliczeniowej, która również nie jest zgodna z Socket AM3, ponieważ jest przeznaczona do zupełnie innych zastosowań oraz wymaga specjalnych płyt głównych. Wybór Pentium D jest również nietrafiony; jest to procesor już przestarzały, który bazuje na starszej architekturze, a co ważniejsze, nie jest zgodny z gniazdem AM3. Takie błędne podejścia, jak mylenie architektur oraz standardów gniazd, są typowymi pułapkami, w które wpadają osoby mniej zaznajomione z budową komputerów. Zrozumienie, że nie każde gniazdo obsługuje wszystkie procesory, jest kluczowe przy budowie własnych systemów komputerowych. W kontekście standardów branżowych, stosowanie komponentów, które są zgodne ze sobą, jest podstawową zasadą zapewniającą sprawność i długowieczność całego zestawu.

Pytanie 3

Drukarka ma przypisany stały adres IP 172.16.0.101 oraz maskę 255.255.255.0. Jaki adres IP powinien być ustawiony dla komputera, aby nawiązać komunikację z drukarką w lokalnej sieci?

A. 255.255.255.1
B. 172.16.0.100
C. 172.16.1.101
D. 173.16.0.101
Adres IP 172.16.0.100 jest prawidłowy do przypisania komputerowi w celu umożliwienia komunikacji z drukarką o stałym adresie IP 172.16.0.101. Oba urządzenia są w tej samej podsieci, co jest kluczowym aspektem dla komunikacji w sieci lokalnej. Przy masce 255.255.255.0, znanej również jako /24, oznacza to, że pierwsze trzy oktety (172.16.0) definiują adres podsieci, a ostatni oktet definiuje konkretne urządzenie. Adresy IP w tej samej podsieci muszą różnić się w ostatnim oktetcie przy użyciu wartości z zakresu 1 do 254 (0 i 255 są zarezerwowane). Adres 172.16.0.100 jest poprawny, ponieważ nie koliduje z adresem drukarki i znajduje się w tym samym zakresie, co umożliwia wysyłanie i odbieranie pakietów między tymi urządzeniami. W praktyce, przydzielając adres IP komputerowi, należy również rozważyć przypisanie dynamicznego adresu IP przez DHCP, aby uniknąć kolizji adresów, ale w przypadku stałych adresów, jak w tym przypadku, kluczowe jest, aby adresy były unikalne w danej sieci.

Pytanie 4

Ile różnych sieci obejmują komputery z adresami IP podanymi w tabeli oraz przy standardowej masce sieci?

A. Sześciu
B. Dwóch
C. Jednej
D. Czterech
Odpowiedź 'Czterech' jest prawidłowa, ponieważ komputery opisane w tabeli mieszczą się w czterech różnych sieciach IP. Każdy adres IP w standardowym formacie IPv4 składa się z czterech oktetów, a w przypadku klasy adresowej A (jak w tym przypadku, gdzie pierwsza liczba to 172) pierwsze 8 bitów (pierwszy oktet) definiuje sieć, a pozostałe 24 bity mogą być używane do definiowania hostów w tej sieci. Używając standardowej maski podsieci 255.0.0.0 dla klasy A, możemy zauważyć, że pierwsze liczby różnych adresów IP decydują o przynależności do sieci. W tabeli mamy adresy 172.16, 172.18, 172.20 i 172.21, co oznacza, że komputery te są rozdzielone na cztery unikalne sieci: 172.16.0.0, 172.18.0.0, 172.20.0.0 i 172.21.0.0. Przykład praktyczny to sytuacja, gdy w firmie różne działy mają swoje własne podsieci, co pozwala na lepsze zarządzanie ruchem sieciowym i zwiększa bezpieczeństwo. Zrozumienie struktury adresacji IP oraz podziału na sieci jest kluczowe w projektowaniu i administracji sieci komputerowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 5

Jaką długość ma maska sieci dla adresów z klasy B?

A. 12 bitów
B. 8 bitów
C. 24 bity
D. 16 bitów
Odpowiedź 16 bitów jest prawidłowa, ponieważ w klasie B adresy IP mają zdefiniowaną długość maski sieci wynoszącą 255.255.0.0, co odpowiada 16 bitom przeznaczonym na identyfikację sieci. Klasa B jest używana w dużych sieciach, gdzie liczba hostów w sieci jest znaczna. Zastosowanie tej długości maski pozwala na podział dużych przestrzeni adresowych, co jest istotne w kontekście efektywnego zarządzania adresami IP. W praktyce, adresy IP klasy B są często wykorzystywane w organizacjach oraz instytucjach posiadających wiele urządzeń w sieci. Przykładem zastosowania jest zbudowanie infrastruktury dla korporacji, gdzie adresy przypisane do różnych działów mogą być zarządzane w ramach tej samej sieci. Warto również zauważyć, że w standardach TCP/IP, klasy adresowe są klasyfikowane w sposób, który wspiera różnorodne scenariusze sieciowe, a znajomość długości maski jest kluczowa dla administratorów sieci.

Pytanie 6

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. przeprowadzania rozmów za pomocą interfejsu tekstowego
B. przesyłania wiadomości e-mail
C. transmisji głosu w sieci
D. wysyłania wiadomości na forum dyskusyjne
Wybór odpowiedzi dotyczącej transmisji głosu przez sieć jest błędny, ponieważ IRC nie jest protokołem stosowanym do przesyłania dźwięku. Protokół ten został zaprojektowany specjalnie do komunikacji tekstowej i nie obsługuje funkcji związanych z transmisją audio, które wymagają znacznie bardziej złożonych mechanizmów kodowania i dekodowania sygnału. Rozwiązania takie jak VoIP (Voice over Internet Protocol) są dedykowane do tego celu, a ich działanie opiera się na innych protokołach, takich jak SIP (Session Initiation Protocol). Również idea transmisji listów na grupę dyskusyjną nie znajduje zastosowania w kontekście IRC, który nie działa na zasadzie przesyłania wiadomości e-mail ani nie jest platformą do publikacji artykułów czy postów w stylu forum internetowego. Kwestia przesyłania poczty e-mail, będąca tematyką drugiej niepoprawnej odpowiedzi, dotyczy zupełnie innego protokołu, jakim jest SMTP (Simple Mail Transfer Protocol), który służy do wymiany wiadomości elektronicznych. To różnorodność protokołów i ich specyficzne zastosowania jest kluczowym elementem zrozumienia architektury internetowej. Wybór nieodpowiednich odpowiedzi może wynikać z mylnego założenia, że wszystkie formy komunikacji internetowej są takie same, co prowadzi do zrozumienia różnorodności narzędzi dostępnych w sieci oraz ich konkretnych zastosowań.

Pytanie 7

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5
B. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5
C. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
D. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
Odpowiedź "route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5" jest prawidłowa, ponieważ poprawnie korzysta z polecenia 'route', które jest powszechnie stosowane w systemach operacyjnych do zarządzania trasami IP. W tym przypadku tworzymy trasę statyczną do sieci 192.168.10.0 z maską podsieci 255.255.255.0, wskazując bramę 192.168.10.1. Numer 5 w tym kontekście oznacza metrykę, co wskazuje na preferencję tej trasy w porównaniu do innych. W praktyce, takie ustawienie trasy statycznej jest istotne w zarządzaniu ruchem sieciowym, zwłaszcza w przypadku małych sieci, gdzie może nie być potrzeby używania dynamicznych protokołów routingu. Przykładem zastosowania może być sytuacja, w której administrator sieci chce, aby wszystkie pakiety kierowane do tej określonej sieci były przesyłane przez określoną bramę, co pozwala na lepsze zarządzanie obciążeniem oraz zapewnienie bezpieczeństwa. Dobra praktyka to dokumentowanie takich ustawień w administracyjnych notatkach, co ułatwia przyszłe modyfikacje i diagnostykę sieci.

Pytanie 8

W systemie Linux można uzyskać listę wszystkich założonych kont użytkowników, wykorzystując polecenie

A. finger (bez parametrów)
B. who -HT
C. cat /etc/passwd
D. id -u
Polecenie 'cat /etc/passwd' jest powszechnie stosowane do przeglądania pliku, w którym przechowywane są informacje o użytkownikach w systemach Linux. Plik '/etc/passwd' zawiera kluczowe dane, takie jak nazwy użytkowników, identyfikatory UID, identyfikatory GID, informacje o katalogach domowych i powłokach logowania. Dzięki temu poleceniu administratorzy systemów oraz użytkownicy z odpowiednimi uprawnieniami mogą szybko zidentyfikować wszystkie założone konta oraz uzyskać dodatkowe informacje o każdym z nich. Przykładowo, wykonując polecenie 'cat /etc/passwd', użytkownik uzyska listę wszystkich kont, co może być przydatne przy audytach bezpieczeństwa lub zarządzaniu użytkownikami. Dobrą praktyką jest również monitorowanie zmian w pliku '/etc/passwd', aby zapewnić, że nie są wprowadzane nieautoryzowane zmiany, co może przyczynić się do podniesienia bezpieczeństwa systemu.

Pytanie 9

Co oznacza standard ACPI w BIOSie komputera?

A. zarządzanie energią oraz konfiguracją
B. modyfikację ustawień BIOSu
C. zapamiętanie sekwencji rozruchu
D. weryfikowanie prawidłowości działania kluczowych komponentów płyty głównej
Wybór odpowiedzi związanej z „sprawdzaniem poprawności działania podstawowych podzespołów płyty głównej” jest niepoprawny, ponieważ nie odnosi się do funkcji standardu ACPI. ACPI nie jest odpowiedzialne za diagnostykę sprzętu, ale raczej za zarządzanie energią i konfiguracją systemu. Istnieją inne komponenty BIOS, takie jak POST (Power-On Self-Test), które wykonują kontrolę i diagnostykę podstawowych podzespołów, jednak nie są one częścią ACPI. Zatem pomylenie funkcji ACPI z testowaniem sprzętu jest typowym błędem, który wynika z niepełnego zrozumienia roli, jaką ACPI odgrywa w architekturze systemów komputerowych. Wspomnienie o „zapamiętywaniu kolejności bootowania” również nie odnosi się do zasadniczego celu ACPI, który koncentruje się na zarządzaniu energią, a nie na konfiguracji rozruchu. Chociaż BIOS posiada funkcję ustalania kolejności bootowania, to jednak realizują ją inne mechanizmy wewnętrzne, a nie ACPI. Wreszcie, odpowiedź dotycząca „zmiany ustawień BIOSu” nie jest również zgodna z rolą ACPI, który nie zajmuje się modyfikacją ustawień BIOS, lecz raczej zarządzaniem energią i konfiguracją systemów operacyjnych oraz urządzeń. ACPI działa na poziomie zarządzania energią w kontekście operacyjnym, a nie na poziomie podstawowych ustawień BIOS, co potwierdza jego specyfikacja i zastosowanie w nowoczesnych technologiach komputerowych.

Pytanie 10

Protokół stosowany w sieciach komputerowych do zarządzania zdalnym terminalem w modelu klient-serwer, który nie gwarantuje bezpieczeństwa przekazywanych danych i funkcjonuje tylko w formacie tekstowym, to

A. Secure Shell
B. Remote Desktop Protocol
C. Telnet
D. Internet Protocol
Telnet to protokół komunikacyjny, który umożliwia zdalne łączenie się z innymi komputerami w sieciach komputerowych, głównie w architekturze klient-serwer. Działa on w trybie tekstowym, co oznacza, że użytkownik może wprowadzać polecenia i otrzymywać odpowiedzi w formie tekstowej. Telnet nie zapewnia jednak żadnego szyfrowania danych, co sprawia, że przesyłane informacje są narażone na podsłuch przez osoby trzecie. Mimo tych ograniczeń, Telnet był szeroko wykorzystywany do zarządzania urządzeniami sieciowymi, serwerami oraz do zdalnego dostępu do systemów. Przykładem zastosowania Telnetu jest konfiguracja routerów i przełączników w sieciach lokalnych, gdzie administrator może wprowadzać polecenia do urządzenia zdalnie. W praktyce, z uwagi na brak bezpieczeństwa, Telnet został w dużej mierze zastąpiony przez bardziej bezpieczne protokoły, takie jak SSH (Secure Shell), które zapewniają szyfrowanie danych i autoryzację użytkowników. Jednak zrozumienie Telnetu jest istotne w kontekście ewolucji protokołów komunikacyjnych oraz zarządzania sieciami.

Pytanie 11

Która usługa pozwala na zdalne logowanie do komputerów, wykonywanie poleceń systemowych oraz zarządzanie siecią?

A. IMAP
B. DNS
C. TELNET
D. NNTP
TELNET to protokół komunikacyjny, który umożliwia zdalne logowanie do systemów komputerowych i wykonywanie poleceń systemowych w trybie tekstowym. Umożliwia to zarządzanie zdalnymi serwerami i komputerami tak, jakby użytkownik był bezpośrednio zalogowany na lokalnej maszynie. TELNET działa na zasadzie klient-serwer, gdzie klient łączy się z serwerem za pomocą portu 23. Przykładowe zastosowania TELNET obejmują zdalne administrowanie serwerami, konfigurację urządzeń sieciowych oraz diagnostykę problemów z siecią. Mimo że TELNET był powszechnie używany, obecnie zaleca się korzystanie z bardziej bezpiecznych rozwiązań, takich jak SSH, ze względu na brak szyfrowania danych, co naraża na przechwycenie informacji przez osoby trzecie. W praktyce administratorzy systemów często wykorzystują TELNET w zamkniętych sieciach, gdzie bezpieczeństwo danych nie jest tak krytyczne, ale w otoczeniach internetowych powinno się unikać jego użycia na rzecz bezpieczniejszych protokołów.

Pytanie 12

W systemie Linux, gdzie przechowywane są hasła użytkowników?

A. passwd
B. password
C. users
D. groups
Odpowiedź "passwd" jest prawidłowa, ponieważ w systemie Linux hasła użytkowników są przechowywane w pliku zwanym /etc/passwd. Plik ten zawiera informacje o użytkownikach, takie jak ich nazwy, identyfikatory oraz ścieżki do ich katalogów domowych. Choć hasła nie są przechowywane w tym pliku w czytelnej postaci, to jednak zawiera on istotne dane związane z kontami użytkowników. W pryzmacie bezpieczeństwa, hasła są zazwyczaj przechowywane w osobnym pliku, takim jak /etc/shadow, który jest dostępny tylko dla użytkownika root, co jest zgodne z najlepszymi praktykami zabezpieczeń. Przykładowo, gdy administrator systemu dodaje nowego użytkownika przy pomocy polecenia 'useradd', dane są automatycznie aktualizowane w odpowiednich plikach, co podkreśla znaczenie systematyczności w zarządzaniu kontami użytkowników. Ponadto, zazwyczaj stosuje się mechanizmy haszowania, takie jak SHA-512, co dodatkowo zwiększa bezpieczeństwo przechowywanych haseł.

Pytanie 13

W systemie Windows zastosowanie przedstawionego polecenia spowoduje chwilową zmianę koloru

Ilustracja do pytania
A. tła okna wiersza poleceń
B. paska tytułowego okna Windows
C. czcionki wiersza poleceń
D. tła oraz czcionek okna Windows
Wiesz, w kontekście tego polecenia w wierszu poleceń czasem można się pomylić co do tego, jak to działa. Polecenie color w Windows działa tylko w oknie wiersza poleceń i zmienia kolory tekstu i tła, ale nie ma wpływu na całe interfejsy, takie jak tło okna systemu czy pasek tytułowy. Myślę, że czasem takie błędne zrozumienie może brać się z braku doświadczenia w pracy z tym narzędziem i ogólnego pojęcia o systemie. W rzeczywistości, jeśli chcesz zmienić globalne ustawienia wizualne, to musisz użyć innych opcji w panelu sterowania. Zrozumienie tej różnicy jest naprawdę ważne, bo dobre korzystanie z wiersza poleceń pozwala na szybsze ogarnianie różnych zadań w systemie. Używanie polecenia color w skryptach też ma sens, bo dzięki kolorom łatwiej śledzić, co się dzieje. Warto znać te zasady i dobre praktyki, bo to przyda się w pracy z komputerem, zwłaszcza w IT.

Pytanie 14

Układ cyfrowy wykonujący operację logiczną koniunkcji opiera się na bramce logicznej

A. EX-OR
B. OR
C. AND
D. NOT
Wybór bramki OR pewnie wynikał z mylnej koncepcji, że też działa logicznie, ale tak naprawdę to jest coś zupełnie innego niż AND. Bramkę OR charakteryzuje to, że wyjście jest wysokie, jeśli przynajmniej jeden sygnał wejściowy jest wysoki. No i w kontekście koniunkcji to nie pasuje. Z kolei bramka NOT, która neguje sygnał, również nie ma tu zastosowania w kontekście AND. A jeśli chodzi o bramkę EX-OR, to też nie jest dobry wybór, bo ona działa na zasadzie wykrywania różnicy między dwoma sygnałami, generując sygnał wysoki tylko wtedy, gdy tylko jeden z sygnałów jest wysoki. Przeważnie takie błędne decyzje wynikają z niepełnego zrozumienia jak te bramki działają w praktyce. Fajnie jest pamiętać, że każda bramka ma swoje własne zastosowanie, co jest podstawą do projektowania bardziej złożonych układów cyfrowych. Zrozumienie różnic między tymi bramkami jest naprawdę ważne w inżynierii i w codziennym życiu z elektroniką.

Pytanie 15

Analizując ruch w sieci, zauważono, że na adres serwera kierowano tysiące zapytań DNS na sekundę z różnych adresów IP, co doprowadziło do zawieszenia systemu operacyjnego. Przyczyną tego zjawiska był atak typu

A. Flooding
B. DNS snooping
C. Mail Bombing
D. DDoS (Distributed Denial of Service)
Atak typu DDoS (Distributed Denial of Service) polega na zasypywaniu serwera dużą ilością zapytań, co prowadzi do jego przeciążenia i w konsekwencji do unieruchomienia usługi. W opisywanym przypadku, tysiące zapytań DNS na sekundę z różnych adresów IP sugerują, że atakujący wykorzystali sieć zainfekowanych urządzeń, znaną jako botnet, by zwiększyć skuteczność ataku. DDoS jest jedną z najczęstszych form cyberataków, używaną przeciwko różnym rodzajom usług online, od stron internetowych po serwery gier. Aby zabezpieczyć się przed takim zagrożeniem, zaleca się wdrożenie systemów ochrony, takich jak zapory sieciowe, systemy wykrywania intruzów oraz usługi mitigacyjne oferowane przez zewnętrznych dostawców. Ponadto, regularne monitorowanie ruchu sieciowego oraz stosowanie technik analizy danych mogą pomóc w wczesnym wykryciu anomalii i potencjalnych ataków.

Pytanie 16

DB-25 służy jako złącze

A. portu równoległego LPT
B. GamePort
C. VGA, SVGA i XGA
D. portu RS-422A
DB-25 to standardowe złącze o 25 pinach, które jest często wykorzystywane jako port równoległy LPT (Line Printer Terminal). Port LPT był powszechnie stosowany w komputerach osobistych lat 80. i 90. do podłączania drukarek i innych urządzeń peryferyjnych. Dzięki swojemu protemjawiającemu się, pozwalał na przesyłanie danych równolegle, co zwiększało szybkość transmisji w porównaniu do portów szeregowych. Oprócz zastosowania w drukarkach, porty LPT były wykorzystywane do podłączania skanerów oraz innych urządzeń, które wymagały dużej przepustowości. W kontekście standardów, LPT opiera się na specyfikacji IEEE 1284, która definiuje mechanizmy komunikacji oraz tryby pracy portu. Dzięki temu port równoległy może być używany w różnych trybach, takich jak nibble mode, byte mode i ECP (Enhanced Capabilities Port). Współczesne technologie zdominowały interfejsy USB i sieciowe, ale złącza DB-25 pozostają ważnym elementem historii technologii komputerowej oraz wciąż są spotykane w niektórych zastosowaniach przemysłowych.

Pytanie 17

Które z urządzeń używanych w sieciach komputerowych nie modyfikuje liczby kolizyjnych domen?

A. Switch.
B. Serwer.
C. Hub.
D. Router.
Ruter to urządzenie, które przekazuje dane pomiędzy różnymi sieciami, często zmieniając liczby domen kolizyjnych poprzez segmentację ruchu. Dzięki wykorzystaniu technologii NAT, rutery mogą również maskować adresy IP, co wprowadza dodatkowe poziomy skomplikowania w zarządzaniu ruchem sieciowym i jego kolizjami. Z kolei przełącznik działa na warstwie łącza danych, co oznacza, że ma bezpośredni wpływ na zarządzanie kolizjami poprzez tworzenie separate collision domains dla każdego portu. To właśnie przełączniki zwiększają efektywność przesyłania danych w sieci, eliminując kolizje w znacznej mierze. Koncentrator, będący urządzeniem działającym na warstwie fizycznej, nie ma możliwości segmentacji domen kolizyjnych, co prowadzi do wzrostu ryzyka kolizji w sieci. W związku z tym, mylnym jest przypisywanie roli serwera do zarządzania domenami kolizyjnymi, gdyż jego głównym zadaniem jest przetwarzanie i udostępnianie zasobów, a nie zarządzanie ruchem w sieci. Zrozumienie różnicy pomiędzy tymi urządzeniami jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 18

W technologii Ethernet 100BaseTX do przesyłania danych wykorzystywane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 3, 6
B. 1, 2, 3, 4
C. 4, 5, 6, 7
D. 1, 2, 5, 6
Niewłaściwe połączenie pinów w kablu UTP może prowadzić do różnych problemów z transmisją danych w sieci Ethernet. Odpowiedzi sugerujące użycie pinów 1 2 3 4 lub 4 5 6 7 nie są zgodne z standardem Ethernet 100BaseTX który określa użycie pinów 1 2 3 i 6 dla przesyłania sygnałów. Piny 4 5 6 7 często są błędnie kojarzone z konfiguracjami stosowanymi w innych systemach komunikacyjnych na przykład w telefonii gdzie mogą być używane różne parami przewodów. Standard Ethernet 100BaseTX wymaga konkretnej specyfikacji okablowania aby zapewnić kompatybilność i niezawodność połączeń sieciowych. Piny 1 i 2 są przeznaczone do nadawania sygnałów podczas gdy 3 i 6 są używane do odbioru. Nieprzestrzeganie tego standardu może prowadzić do problemów z jakością sygnału i prędkością transmisji danych co jest kluczowe w środowiskach o wysokim obciążeniu sieciowym. Dlatego istotne jest aby technicy sieciowi dokładnie przestrzegali specyfikacji takich jak EIA/TIA-568A/B podczas konfiguracji sieci. Umiejętność poprawnego zakończenia kabli według tych standardów jest niezbędna do zapewnienia efektywnego działania nowoczesnych sieci komputerowych. Niewłaściwe rozłożenie pinów może prowadzić do zakłóceń i utraty danych co w konsekwencji skutkuje spadkiem wydajności i stabilności sieci. Dlatego zrozumienie specyfikacji standardu Ethernet jest kluczowe dla wszelkich działań związanych z instalacją i zarządzaniem sieciami komputerowymi. Przy projektowaniu i wdrażaniu sieci istotne jest aby unikać takich błędów które mogą prowadzić do poważnych problemów z łącznością i wydajnością sieciową w środowiskach korporacyjnych i domowych.

Pytanie 19

Aby chronić systemy sieciowe przed zewnętrznymi atakami, należy zastosować

A. protokół SSH
B. narzędzie do zarządzania połączeniami
C. serwer DHCP
D. zapory sieciowej
Zapora sieciowa, czyli firewall, to mega ważny element w zabezpieczaniu sieci. Jej główna robota to monitorowanie i kontrolowanie, co właściwie się dzieje w ruchu sieciowym, zgodnie z ustalonymi zasadami. Dzięki niej możemy zablokować nieautoryzowane dostępy i odrzucać niebezpieczne połączenia. To znacznie zmniejsza ryzyko ataków hakerskich czy wirusów. Przykładem może być to, jak firma używa zapory na granicy swojej sieci, żeby chronić swoje zasoby przed zagrożeniami z Internetu. W praktyce zapory mogą być sprzętowe albo programowe, a ich ustawienia powinny być zgodne z najlepszymi praktykami w branży, jak zasada minimalnych uprawnień, co oznacza, że dostęp mają tylko ci, którzy naprawdę go potrzebują. Różne standardy, na przykład ISO/IEC 27001, podkreślają, jak ważne jest zarządzanie bezpieczeństwem danych, w tym stosowanie zapór w szerszej strategii ochrony informacji.

Pytanie 20

Medium transmisyjne oznaczone symbolem S/FTP wskazuje na skrętkę

A. z ekranem dla każdej pary oraz z ekranem z folii dla czterech par przewodów.
B. tylko z ekranem z folii dla czterech par przewodów.
C. z ekranem z folii dla każdej pary przewodów oraz z ekranem z siatki dla czterech par.
D. bez ekranu.
Odpowiedź wskazująca na medium transmisyjne o symbolu S/FTP jako skrętkę z ekranem z folii na każdej parze przewodów oraz ekranem z siatki na czterech parach jest poprawna, ponieważ dokładnie odzwierciedla strukturę tego typu kabla. S/FTP oznacza, że każda para przewodów w kablu jest ekranowana osobno folią, co redukuje zakłócenia elektromagnetyczne, a dodatkowo cały kabel jest osłonięty ekranem z siatki, co zapewnia wysoką odporność na zewnętrzne źródła zakłóceń. Tego rodzaju konstrukcja jest szczególnie cenna w zastosowaniach wymagających dużej wydajności i niezawodności, takich jak sieci o wysokiej przepustowości (np. 10 GbE) i w środowiskach przemysłowych. Zgodnie z normą ISO/IEC 11801, kable S/FTP są rekomendowane do zastosowań w biurach i centrach danych, gdzie zakłócenia mogą znacząco wpływać na jakość sygnału. W praktyce, stosowanie ekranów poprawia jakość transmisji danych, co jest kluczowe dla zapewnienia stabilnych połączeń sieciowych.

Pytanie 21

Aby utworzyć kontroler domeny w systemach z rodziny Windows Server na serwerze lokalnym, konieczne jest zainstalowanie roli

A. usług LDS w Active Directory
B. usług zarządzania prawami dostępu w Active Directory
C. usług certyfikatów w Active Directory
D. usług domenowej w Active Directory
Usługi domenowe w usłudze Active Directory (AD DS) są kluczowym elementem infrastruktury Windows Server, które umożliwiają tworzenie i zarządzanie domenami, a tym samym kontrolerami domeny. Kontroler domeny jest serwerem, który autoryzuje i uwierzytelnia użytkowników oraz komputery w sieci, a także zarządza politykami zabezpieczeń. Instalacja roli AD DS na serwerze Windows Server pozwala na stworzenie struktury katalogowej, która jest niezbędna do prawidłowego funkcjonowania usług takich jak logowanie do sieci, zarządzanie dostępem do zasobów oraz centralne zarządzanie politykami grupowymi (GPO). Przykładem zastosowania tej roli może być organizacja, która chce wprowadzić jednolite zarządzanie kontami użytkowników i komputerów w wielu lokalizacjach. Dodatkowo, zgodnie z najlepszymi praktykami IT, każda instytucja korzystająca z systemów Windows powinna mieć w swojej architekturze przynajmniej jeden kontroler domeny, aby zapewnić ciągłość działania i bezpieczeństwo operacji sieciowych.

Pytanie 22

Symbol przedstawiony na ilustracji oznacza rodzaj złącza

Ilustracja do pytania
A. COM
B. FIRE WIRE
C. HDMI
D. DVI
Symbol pokazany na rysunku przedstawia złącze FireWire które jest znane również jako IEEE 1394. FireWire jest standardem komunikacyjnym opracowanym przez firmę Apple w latach 90. XX wieku. Służy do szybkiego przesyłania danych między urządzeniami multimedialnymi takimi jak kamery cyfrowe komputery czy dyski zewnętrzne. W porównaniu do innych standardów takich jak USB FireWire oferuje wyższą przepustowość i bardziej zaawansowane funkcje zarządzania danymi co czyni go idealnym wyborem do zastosowań wymagających dużej przepustowości. FireWire był popularny w branży wideo zwłaszcza przy profesjonalnym montażu wideo i transmisji danych w czasie rzeczywistym. Standard ten obsługuje tzw. hot swapping co oznacza że urządzenia mogą być podłączane i odłączane bez wyłączania komputera. W praktyce złącza FireWire można spotkać w dwóch wersjach: 4-pinowej i 6-pinowej przy czym ta druga oferuje zasilanie dla podłączonych urządzeń. Mimo że technologia ta została w dużej mierze zastąpiona przez nowsze standardy takie jak Thunderbolt czy USB 3.0 FireWire wciąż znajduje zastosowanie w niektórych niszowych aplikacjach dzięki swojej niezawodności i szybkości.

Pytanie 23

Płyta główna serwerowa potrzebuje pamięci z rejestrem do prawidłowego funkcjonowania. Który z poniższych modułów pamięci będzie zgodny z tą płytą?

A. Kingston Hynix B 8GB 1600MHz DDR3L CL11 ECC SODIMM 1,35 V
B. Kingston 4GB 1600MHz DDR3 ECC CL11 DIMM 1,5 V
C. Kingston 8GB 1333MHz DDR3 ECC Reg CL9 DIMM 2Rx8
D. Kingston 4GB 1333MHz DDR3 Non-ECC CL9 DIMM
Pozostałe moduły pamięci nie pasują do wymagań serwerowej płyty głównej, bo ta potrzebuje pamięci z rejestrem. Na przykład Kingston 4GB 1333MHz DDR3 Non-ECC CL9 DIMM to pamięć typu Non-ECC, co znaczy, że nie ma funkcji, która wykrywa błędy. W serwerach, gdzie stabilność i bezpieczeństwo danych są niezwykle ważne, brak tej funkcji może prowadzić do kłopotów, np. utraty danych. Inny zły wybór to Kingston 4GB 1600MHz DDR3 ECC CL11 DIMM 1,5 V. Mimo że to pamięć ECC, nie jest rejestrowana, więc może nie działać z płytami, które wymagają rejestracji. A Kingston Hynix B 8GB 1600MHz DDR3L CL11 ECC SODIMM 1,35 V to moduł SODIMM, zazwyczaj stosowany w laptopach, a nie w serwerach, na dodatek nie jest rejestrowany. Takie pomyłki często biorą się z niepełnego zrozumienia różnic między pamięciami i ich przeznaczeniem. W serwerach bardzo istotne są wymagania dotyczące kompatybilności i stabilności pamięci, dlatego ważne jest, żeby zwracać uwagę nie tylko na parametry takie jak częstotliwość czy opóźnienie, ale też na to, czy pamięć jest rejestrowana i czy odpowiada wymaganiom płyty głównej.

Pytanie 24

Ile par kabli jest używanych w standardzie 100Base-TX do obustronnej transmisji danych?

A. 8
B. 4
C. 2
D. 1
Wybór jednej pary przewodów do transmisji danych w standardzie 100Base-TX jest błędny, ponieważ nie zaspokaja wymagań dotyczących prędkości i wydajności. Standard 100Base-TX, będący częścią rodziny Ethernet, działa z prędkością 100 Mbps i wymaga pełnodupleksowej komunikacji, co oznacza, że dane muszą być przesyłane jednocześnie w obie strony. Użycie tylko jednej pary przewodów prowadziłoby do znacznych ograniczeń w wydajności, ponieważ w takim układzie dane mogłyby być przesyłane tylko w jednym kierunku w danym czasie, co skutkowałoby utratą efektywności i opóźnieniami w przesyłaniu informacji. W przypadku wyboru czterech lub ośmiu par, również pojawiają się problemy, ponieważ standard 100Base-TX nie jest zaprojektowany do pracy z taką liczbą przewodów. W rzeczywistości, cztery pary stosowane są w bardziej zaawansowanych standardach, jak 1000Base-T, które obsługują prędkości 1 Gbps. Dlatego też, kluczowym błędem jest myślenie, że większa liczba par zapewnia automatycznie lepszą wydajność, co w kontekście 100Base-TX jest nieprawdziwe. Zrozumienie różnicy między standardami Ethernet i ich wymaganiami jest istotne dla skutecznej budowy infrastruktury sieciowej oraz dla efektywnego zarządzania sieciami w każdym środowisku.

Pytanie 25

Jakie urządzenie pracuje w warstwie łącza danych i umożliwia integrację segmentów sieci o różnych architekturach?

A. regenerator
B. most
C. ruter
D. koncentrator
Most (ang. bridge) jest urządzeniem działającym na warstwie łącza danych w modelu OSI, które łączy różne segmenty sieci, umożliwiając im komunikację przy zachowaniu ich odrębności. Mosty operują na adresach MAC, co pozwala im na efektywne filtrowanie ruchu i redukcję kolizji w sieci. Przykładowo, w dużych sieciach lokalnych, gdzie różne segmenty mogą działać na różnych technologiach (np. Ethernet i Wi-Fi), mosty umożliwiają ich integrację bez potrzeby zmiany istniejącej infrastruktury. Mosty są często wykorzystywane w sieciach rozległych (WAN) i lokalnych (LAN), a ich zastosowanie przyczynia się do zwiększenia wydajności i stabilności sieci. W praktyce, dzięki mostom, administratorzy mogą segmentować sieć w celu lepszego zarządzania ruchem oraz poprawy bezpieczeństwa, implementując polityki ograniczenia dostępu do poszczególnych segmentów, co jest zgodne z ogólnymi zasadami projektowania sieci. Warto również zaznaczyć, że mosty są częścią standardów IEEE 802.1, dotyczących zarządzania siecią lokalną.

Pytanie 26

Jakie znaczenie ma skrót MBR w kontekście technologii komputerowej?

A. Usługę związaną z interpretacją nazw domen
B. Główny rekord rozruchowy SO
C. Fizyczny identyfikator karty sieciowej
D. Bloki pamięci w górnej części komputera IBM/PC
Skrót MBR oznacza 'Master Boot Record', co jest kluczowym elementem architektury systemów operacyjnych, zwłaszcza w kontekście rozruchu komputerów. Główny rekord rozruchowy znajduje się na początku dysku twardego i zawiera informacje niezbędne do zainicjowania systemu operacyjnego. MBR jest odpowiedzialny za lokalizację i uruchomienie systemu operacyjnego poprzez przekazywanie kontroli do odpowiedniego sektora rozruchowego. W praktyce, MBR zawiera również tablicę partycji, która definiuje, jak przestrzeń dyskowa jest podzielona pomiędzy różne systemy plików. W przypadku systemów BIOS, MBR jest standardem od lat 80-tych XX wieku, jednak coraz częściej zastępowany jest przez nowocześniejszy system UEFI, który oferuje lepsze wsparcie dla dużych dysków i więcej funkcji zabezpieczeń. Wiedza o MBR jest niezbędna dla specjalistów IT zajmujących się administracją systemów, gdyż pozwala na zrozumienie podstawowych zasad zarządzania danymi oraz procesów rozruchowych w komputerach.

Pytanie 27

Jakie jest adres rozgłoszeniowy w podsieci o adresie IPv4 192.168.160.0/21?

A. 192.168.255.254
B. 192.168.7.255
C. 192.168.167.255
D. 192.168.160.254
Adres rozgłoszeniowy (broadcast address) w podsieci jest kluczowym elementem, który umożliwia komunikację z wszystkimi hostami w danej podsieci. Dla podsieci o adresie IPv4 192.168.160.0/21, maska podsieci wynosi 255.255.248.0, co oznacza, że ​​pierwsze 21 bitów jest używane do identyfikacji podsieci, a pozostałe bity dla hostów. Zakres adresów hostów w tej podsieci wynosi od 192.168.160.1 do 192.168.167.254. Adres rozgłoszeniowy jest zawsze ostatnim adresem w danym zakresie, co w tym przypadku daje 192.168.167.255. Użytkownicy w sieci mogą używać adresu rozgłoszeniowego do wysyłania pakietów do wszystkich urządzeń w danej podsieci jednocześnie, co jest szczególnie przydatne w aplikacjach takich jak DHCP czy ARP. Zrozumienie, jak obliczać adres rozgłoszeniowy, jest kluczowe dla projektowania i zarządzania wydajnymi oraz skalowalnymi sieciami według najlepszych praktyk branżowych.

Pytanie 28

Co symbolizuje graficzny znak przedstawiony na ilustracji?

Ilustracja do pytania
A. gniazd telekomunikacyjne
B. otwarty kanał kablowy
C. główny punkt dystrybucyjny
D. zamknięty kanał kablowy
Symbole używane w dokumentacji technicznej są kluczowe dla zrozumienia planów i schematów instalacji teletechnicznych. Otwarty kanał kablowy, mimo że jest często używany do prowadzenia przewodów, zwykle oznaczany jest w inny sposób, bardziej przypominający prostokątną ramkę, co pozwala na łatwe wyróżnienie na planach. Zamknięte kanały kablowe, takie jak korytka czy rynny, też mają różne oznaczenia w zależności od ich specyfiki i zastosowania, co jest regulowane przez normy takie jak EN 50085. Z kolei główny punkt dystrybucyjny, będący centralnym elementem sieci telekomunikacyjnej, gdzie zbiegają się główne linie transmisyjne, zwykle oznaczany jest bardziej złożonym symbolem, często z dodatkowymi opisami technicznymi. Błędne zrozumienie symboli może prowadzić do nieprawidłowej instalacji lub konfiguracji systemów telekomunikacyjnych, co z kolei skutkuje problemami z łącznością lub niespełnieniem norm bezpieczeństwa i funkcjonalności. Dlatego tak istotne jest dokładne zaznajomienie się ze standardami oznaczeń, co pozwala na efektywne planowanie i realizację projektów zgodnie z wymaganiami branżowymi. Znajomość różnic w symbolach i ich zastosowaniach jest niezbędna dla specjalistów zajmujących się projektowaniem i instalacją systemów telekomunikacyjnych, aby uniknąć typowych błędów myślowych i nieporozumień w interpretacji dokumentacji technicznej. Prawidłowa interpretacja symboli jest kluczowa dla zapewnienia, że wszystkie elementy infrastruktury są zainstalowane zgodnie z planem i działają optymalnie.

Pytanie 29

Jakie polecenie w systemie Linux prawidłowo ustawia kartę sieciową, przypisując adres IP oraz maskę sieci dla interfejsu eth1?

A. ifconfig eth1 192.168.1.0 netmask 255.255.255.0
B. ifconfig eth1 192.168.1.0 netmask 0.255.255.255.255
C. ifconfig eth1 192.168.1.255 netmask 255.255.255.0
D. ifconfig eth1 192.168.1.1 netmask 255.255.255.0
Pierwsza z błędnych odpowiedzi, 'ifconfig eth1 192.168.1.0 netmask 255.255.255.0', jest niepoprawna, ponieważ adres 192.168.1.0 jest zarezerwowany jako adres sieciowy i nie może być przypisany do konkretnego urządzenia. Adresy sieciowe nie mogą być przypisane do interfejsów, ponieważ oznaczają one samą sieć, a nie jej hosty. Druga odpowiedź, 'ifconfig eth1 192.168.1.255 netmask 255.255.255.0', także jest błędna, ponieważ adres 192.168.1.255 jest adresem rozgłoszeniowym (broadcast), co oznacza, że jest używany do wysyłania pakietów do wszystkich urządzeń w danej podsieci. Adres ten również nie może być przypisany do konkretnego interfejsu, gdyż jego funkcją jest komunikacja z wszystkimi urządzeniami w sieci. Ostatnia z odpowiedzi, 'ifconfig eth1 192.168.1.0 netmask 0.255.255.255.255', jest skrajnie niepoprawna, ponieważ maska 0.255.255.255.255 jest niezgodna z zasadami klasyfikacji adresów IP. Tego rodzaju maska nie definiuje żadnej podsieci i prowadzi do niejasności w komunikacji. Warto podkreślić, że przy konfiguracji interfejsów sieciowych zawsze należy przestrzegać zasad przydzielania adresów IP oraz rozumieć znaczenie adresów sieciowych i rozgłoszeniowych. Błędy w tej kwestii mogą prowadzić do problemów z łącznością i komunikacją w sieci.

Pytanie 30

W jaki sposób oznaczona jest skrętka bez zewnętrznego ekranu, mająca każdą parę w osobnym ekranie folii?

A. F/UTP
B. U/FTP
C. S/FTP
D. F/STP
Odpowiedź U/FTP oznacza, że skrętka nie ma zewnętrznego ekranu, ale każda z par przewodów jest chroniona przez ekran z folii. To podejście jest szczególnie korzystne w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych, gdzie izolacja par przewodów pozwala na zredukowanie szumów oraz utrzymanie integralności sygnału. U/FTP jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dla systemów okablowania miedzianego. Przykładem zastosowania U/FTP są instalacje sieciowe w biurach, gdzie bliskość różnych urządzeń elektronicznych może generować zakłócenia. Użycie skrętki U/FTP pozwala na osiągnięcie lepszej wydajności transmisji danych, co jest kluczowe w nowoczesnych sieciach komputerowych, szczególnie przy wysokich prędkościach transferu.

Pytanie 31

Jakie urządzenie zostało pokazane na ilustracji?

Ilustracja do pytania
A. Punkt dostępu
B. Ruter
C. Przełącznik
D. Modem
Rutery to urządzenia sieciowe służące do łączenia różnych sieci, przede wszystkim lokalnej sieci z Internetem. Ich kluczową funkcją jest przesyłanie danych pomiędzy różnymi sieciami oraz zarządzanie ruchem sieciowym. Zawierają wbudowane funkcje takie jak NAT czy DHCP, które ułatwiają zarządzanie adresami IP w sieci lokalnej. Błędnym przekonaniem jest, że wszystkie urządzenia z antenami to rutery, co nie jest prawdą ponieważ punkty dostępu również mogą posiadać anteny. Modemy z kolei są urządzeniami, które konwertują sygnały cyfrowe na analogowe i odwrotnie, umożliwiając połączenie z Internetem przez telefoniczne linie analogowe lub cyfrowe. Nie posiadają one funkcji zarządzania siecią ani zasięgu bezprzewodowego, co czyni je całkowicie odmiennymi od punktów dostępu. Przełączniki, zwane również switchami, są urządzeniami umożliwiającymi komunikację między różnymi urządzeniami w tej samej sieci lokalnej. Ich zadaniem jest przesyłanie danych na podstawie adresów MAC, co umożliwia efektywną transmisję danych w ramach sieci lokalnej. W odróżnieniu od punktów dostępu nie oferują one funkcji bezprzewodowych i są wykorzystywane w sieciach przewodowych. Istotne jest zrozumienie różnic funkcjonalnych pomiędzy tymi urządzeniami, aby prawidłowo określić ich zastosowanie w złożonych konfiguracjach sieciowych. Typowym błędem jest nieodróżnianie tych urządzeń na podstawie ich wyglądu zewnętrznego, co prowadzi do nieprawidłowych założeń co do ich funkcji i zastosowania w praktyce zawodowej.

Pytanie 32

Za przypisanie czasu procesora do wyznaczonych zadań odpowiada

A. chipset.
B. cache procesora.
C. pamięć RAM.
D. system operacyjny
Chociaż chipset, pamięć RAM i cache procesora mają kluczowe znaczenie w architekturze komputerów i wpływają na ich wydajność, nie są odpowiedzialne za przydzielanie czasu procesora do zadań. Chipset, będący zbiorem układów scalonych na płycie głównej, odpowiada za komunikację między procesorem, pamięcią i innymi komponentami, ale nie ma bezpośredniego wpływu na zarządzanie zadaniami. Pamięć RAM, będąca pamięcią operacyjną, służy do przechowywania danych i instrukcji dla procesora, a jej rola polega na tym, że udostępnia miejsce, w którym procesy mogą działać. Cache procesora to szybka pamięć, która przechowuje najczęściej używane dane i instrukcje, co przyspiesza ich dostępność, ale sama z siebie nie przydziela czasu procesora. Typowym błędem w myśleniu jest mylenie funkcji zarządzania zasobami z rolą komponentów sprzętowych. Właściwe zrozumienie, że to właśnie system operacyjny pełni rolę koordynatora, który decyduje, jak i kiedy procesy mają korzystać z procesora, jest kluczowe dla głębszego zrozumienia działania komputerów. Dlatego ważne jest, aby uczyć się nie tylko o komponentach hardware'owych, ale także o tym, jak oprogramowanie koordynuje ich działanie w celu osiągnięcia efektywności i stabilności systemu.

Pytanie 33

Podczas testowania połączeń sieciowych za pomocą polecenia ping użytkownik otrzymał wyniki przedstawione na rysunku. Jakie może być źródło braku odpowiedzi serwera przy pierwszym teście, zakładając, że domena wp.pl ma adres 212.77.100.101?

Ilustracja do pytania
A. Brak domyślnej bramy w ustawieniach karty sieciowej
B. Brak przypisania serwera DHCP do karty sieciowej
C. Nieobecność adresów serwera DNS w konfiguracji karty sieciowej
D. Nieprawidłowy adres IP przypisany do karty sieciowej
Brak adresów serwera DNS w konfiguracji karty sieciowej powoduje, że komputer nie jest w stanie przetłumaczyć nazwy domeny wp.pl na jej odpowiadający adres IP 212.77.100.101. DNS, czyli Domain Name System, jest kluczowym elementem infrastruktury internetowej, który umożliwia przekształcanie czytelnych dla człowieka nazw domen na adresy IP zrozumiałe dla komputerów. Bez poprawnie skonfigurowanych serwerów DNS, komputer nie może skutecznie nawiązać połączenia z serwerem, co skutkuje błędem przy pierwszej próbie użycia polecenia ping. W praktyce wiele systemów operacyjnych umożliwia automatyczne przypisywanie adresów DNS za pomocą DHCP, jednak w przypadku braku odpowiedniego serwera DHCP lub jego nieprawidłowej konfiguracji, użytkownik musi ręcznie wprowadzić adresy DNS. Dobrymi praktykami jest korzystanie z powszechnie dostępnych serwerów DNS, takich jak te dostarczane przez Google (8.8.8.8 i 8.8.4.4), które są znane z wysokiej wydajności i niezawodności. Prawidłowa konfiguracja serwerów DNS jest kluczowa dla stabilnego i szybkiego działania aplikacji sieciowych oraz ogólnego doświadczenia użytkownika w korzystaniu z Internetu.

Pytanie 34

Który zakres adresów pozwala na komunikację multicast w sieciach z użyciem adresacji IPv6?

A. ff00::/8
B. 3ffe::/16
C. 2002::/24
D. ::/96
Odpowiedź ff00::/8 jest poprawna, ponieważ jest to zarezerwowany zakres adresów IPv6 przeznaczony do komunikacji multicast. W architekturze IPv6, adresy multicast są używane do przesyłania pakietów do grupy odbiorców, co jest kluczowe w aplikacjach takich jak transmisje wideo, audio w czasie rzeczywistym oraz różnorodne usługi multimedialne. Umożliwia to efektywne wykorzystanie zasobów sieciowych, ponieważ pakiety są wysyłane raz i mogą być odbierane przez wiele urządzeń jednocześnie, zamiast wysyłać osobne kopie do każdego z nich. Przykładowo, w kontekście protokołów takich jak MLD (Multicast Listener Discovery), urządzenia w sieci mogą dynamicznie dołączać lub opuszczać grupy multicastowe, co zwiększa elastyczność i wydajność komunikacji. Standardy takie jak RFC 4291 dokładnie definiują sposób działania adresacji multicast w IPv6, co czyni ten zakres adresów kluczowym elementem nowoczesnych sieci komputerowych.

Pytanie 35

Jakim protokołem łączności, który gwarantuje pewne dostarczenie informacji, jest protokół

A. IPX
B. UDP
C. ARP
D. TCP
Protokół TCP (Transmission Control Protocol) jest kluczowym protokołem w modelu OSI, który zapewnia niezawodne dostarczenie danych w sieciach komputerowych. Jego główną cechą jest to, że stosuje mechanizmy kontroli błędów oraz potwierdzania odbioru danych. TCP dzieli dane na pakiety, które są numerowane, co umożliwia ich prawidłowe odtworzenie w odpowiedniej kolejności na odbiorcy. W przypadku, gdy pakiety nie dotrą lub dotrą uszkodzone, protokół TCP podejmuje działania naprawcze, takie jak retransmisja brakujących pakietów. Przykładem zastosowania TCP jest przesyłanie stron internetowych, podczas gdy protokoły takie jak HTTP czy HTTPS, które działają na bazie TCP, zapewniają, że dane są dostarczane poprawnie i w odpowiedniej kolejności. Standardy branżowe, takie jak RFC 793, definiują funkcjonalność i działanie TCP, co sprawia, że jest on uznawany za jeden z najważniejszych protokołów w komunikacji internetowej, szczególnie tam, gdzie niezawodność przesyłania informacji jest kluczowa.

Pytanie 36

Zaprezentowane narzędzie jest wykorzystywane do

Ilustracja do pytania
A. zaciskania wtyków RJ11 oraz RJ45
B. zdejmowania izolacji okablowania
C. spawania przewodów światłowodowych
D. lokalizacji uszkodzeń włókien światłowodowych
Narzędzie przedstawione na zdjęciu to lokalizator uszkodzeń włókien światłowodowych. Jest to urządzenie, które emituje widoczne światło laserowe poprzez włókna światłowodowe w celu identyfikacji miejsc uszkodzeń lub pęknięć. W praktyce, gdy światłowód jest uszkodzony światło laserowe wycieka przez uszkodzenie co ułatwia technikom zlokalizowanie problemu. Lokalizatory uszkodzeń są nieocenionym narzędziem w szybkim diagnozowaniu i naprawie sieci optycznych minimalizując czas przestoju. Są zgodne z dobrymi praktykami branżowymi w zakresie utrzymania infrastruktury telekomunikacyjnej. Często stosuje się je podczas instalacji konserwacji oraz testów sieci optycznych. Zastosowanie tego typu urządzenia pozwala na szybkie i efektywne wykrycie źródła problemu co jest istotne w środowisku, w którym niezawodność i szybkość działania są kluczowe. Praca z lokalizatorem wymaga jednak ostrożności ze względu na intensywność światła laserowego która może być szkodliwa dla oczu dlatego zaleca się przestrzeganie zasad bezpieczeństwa.

Pytanie 37

Funkcja systemu Windows Server, umożliwiająca zdalną instalację systemów operacyjnych na komputerach kontrolowanych przez serwer, to

A. GPO
B. WDS
C. FTP
D. DFS
GPO, czyli Group Policy Object, to mechanizm zarządzania polityką grupy w systemach Windows, który pozwala administratorom na definiowanie i egzekwowanie ustawień dla użytkowników i komputerów w sieci. GPO nie jest odpowiednie do zdalnej instalacji systemów operacyjnych, lecz do zarządzania konfiguracją systemów już zainstalowanych. Używanie GPO do tego celu mogłoby prowadzić do nieporozumień, ponieważ wiele osób może myśleć, że ustawienia polityki mogą zastąpić proces instalacji. FTP, czyli File Transfer Protocol, to z kolei protokół transferu plików, który służy do przesyłania plików między komputerami w sieci. Choć FTP może być wykorzystywany do przesyłania obrazów systemów operacyjnych, nie jest to narzędzie do ich instalacji, a jego stosowanie w tym kontekście jest niewłaściwe. DFS, czyli Distributed File System, to technologia umożliwiająca zarządzanie i replikację danych w rozproszonym środowisku. Tak samo jak w przypadku FTP, DFS nie jest narzędziem do instalacji systemów operacyjnych, lecz do zarządzania dostępem do plików. Typowym błędem myślowym jest mylenie różnych technologii i ich funkcji, co może prowadzić do nieefektywnego zarządzania infrastrukturą IT. Dlatego kluczowe jest zrozumienie specyfiki narzędzi oraz ich odpowiednich zastosowań w kontekście administracji systemami.

Pytanie 38

Na ilustracji przedstawiono przekrój kabla

Ilustracja do pytania
A. U/UTP
B. optycznego
C. koncentrycznego
D. S/UTP
Kabel koncentryczny charakteryzuje się specyficzną budową, która obejmuje centralny przewodnik wewnętrzny, otoczony izolacją dielektryczną, a następnie przewodnikiem zewnętrznym, który najczęściej jest wykonany z plecionki miedzianej lub folii aluminiowej. Całość zamknięta jest w zewnętrznej osłonie ochronnej. Ta konstrukcja pozwala na efektywne przesyłanie sygnałów o wysokiej częstotliwości z minimalnym tłumieniem i zakłóceniami zewnętrznymi. Kabel koncentryczny jest szeroko stosowany w systemach telewizji kablowej, instalacjach antenowych oraz w sieciach komputerowych do przesyłania sygnałów radiowych i telewizyjnych. Dzięki swojej budowie kabel ten jest odporny na wpływ zakłóceń elektromagnetycznych, co czyni go idealnym rozwiązaniem w sytuacjach, gdzie konieczne jest utrzymanie wysokiej jakości sygnału na długich dystansach. Dodatkowo kable koncentryczne są zgodne ze standardami takimi jak RG-6 i RG-59, co zapewnia ich szerokie zastosowanie w różnych dziedzinach technologii komunikacyjnej.

Pytanie 39

W systemie Linux można uzyskać kopię danych przy użyciu komendy

A. restore
B. dd
C. split
D. tac
Zarówno 'tac', 'split', jak i 'restore' nie są odpowiednimi poleceniami do kopiowania danych w kontekście systemu Linux, ponieważ pełnią one zupełnie inne funkcje. 'Tac' jest narzędziem do wyświetlania plików tekstowych w odwrotnej kolejności, co oznacza, że może być użyteczne w kontekście analizy danych lub przetwarzania tekstu, ale nie ma zastosowania w kopiowaniu czy tworzeniu obrazów danych. 'Split' z kolei jest przydatne do dzielenia dużych plików na mniejsze części, co może być użyteczne w przypadku przesyłania lub archiwizacji danych, lecz nie wykonuje kopii zapasowej w sensie blokowym, jak 'dd'. 'Restore' to polecenie, które zazwyczaj odnosi się do przywracania danych z kopii zapasowej, a nie do ich kopiowania. Często użytkownicy mylą te narzędzia, ponieważ wszystkie są częścią ekosystemu Linux, ale mają różne zastosowania. Zrozumienie, kiedy i jak stosować konkretne polecenia, jest kluczowe dla efektywnego zarządzania danymi i unikania błędów, które mogą prowadzić do utraty informacji. W praktyce, znajomość właściwych narzędzi oraz ich zastosowania w różnych scenariuszach jest niezbędna dla administratorów systemów oraz użytkowników zaawansowanych.

Pytanie 40

Podczas testowania kabla sieciowego zakończonego wtykami RJ45 przy użyciu diodowego testera okablowania, diody LED zapalały się w odpowiedniej kolejności, z wyjątkiem diod oznaczonych numerami 2 i 3, które świeciły równocześnie na jednostce głównej testera, natomiast na jednostce zdalnej nie świeciły wcale. Jaka mogła być tego przyczyna?

A. Pary odwrócone
B. Pary skrzyżowane
C. Nieciągłość kabla
D. Zwarcie
Wybór innych opcji jako przyczyny problemu z połączeniem w kablu sieciowym nie uwzględnia kluczowych aspektów związanych z zasadami działania kabli oraz standardami okablowania. Pary skrzyżowane są sytuacją, w której żyły przewodów są zamienione miejscami, co może prowadzić do problemów z komunikacją. Jednak w przypadku testera diodowego nie zaobserwujemy, aby diody zapalały się równocześnie dla innych par, co wskazuje, że to nie jest przyczyna problemu. Nieciągłość kabla oznaczałaby, że jedna z żył nie jest połączona, co byłoby widoczne w teście jako brak sygnału, co również nie miało miejsca, gdyż diody zapalały się dla innych par. Pary odwrócone to sytuacja, w której żyły są nieprawidłowo podłączone, ale również nie prowadziłoby to do równoczesnego zapalania się diod na jednostce głównej testera. W przeciwnym razie test wykazałby niesprawność w przesyłaniu sygnału do jednostki zdalnej. Zachowanie diod na testerze jasno wskazuje, że przyczyną problemu jest zwarcie, co prowadzi do mylnych konkluzji w przypadku błędnego wyboru. W praktyce, zrozumienie tych różnic oraz umiejętność diagnozowania problemów jest kluczowe dla efektywnej pracy z sieciami komputerowymi, a także dla zapewnienia ich prawidłowego funkcjonowania zgodnie z powszechnie przyjętymi standardami branżowymi.